
12/3/2008

1

Target Code Generation

David Notkin

Autumn 2008

Schedule

• Project D: intermediate code generation

– Due: December 3

• Due December 10, 5PM (available Monday 11/17)

– Project E: target code generation [MiniJava++]

– Written assignment [MiniJava--]

• Final on December 11 (one hour, backend focused)

CSE401 Au08 2

Target Code Generation 

• Input: intermediate language (IL) 

• Output: target language program 

• Target languages include 

– absolute binary (machine) code 

– relocatable binary code 

– assembly code 

– C 

• Using the generated intermediate code, convert to 

instructions and memory characteristics of the target 

machine

– Target code generation must bridge the gap

Gap: machine code
IL Machine Code

global variables global static memory

unbounded number of 

interchangeable local variables

fixed number of registers, of various 

incompatible kinds, plus unbounded 

number of stack locations

built-in parameter passing & 

result returning

calling conventions defining where 

arguments & results are stored and which 

registers may be overwritten by callee

statements machine instructions

statements can have arbitrary 

subexpression trees

instructions have restricted operand 

addressing

conditional branches based on 

integers representing Boolean 

values

conditional branches based on condition 

codes (maybe)

Tasks of Code Generator

• Register allocation 

– for each IL variable, select register/stack 

location/global memory location(s) to hold it based 

on it’s type and lifetime

• Stack frame layout 

• Instruction selection 

– for each IL instruction (sequence), select target 

language instruction (sequence); must consider 

operand addressing mode selection 

These tasks interact

• Instruction selection depends on where operands are 

allocated 

• Some IL variables may not need a register, 

depending on the instructions & addressing modes 

that are selected

• Stack frame layout may depend on instruction set

• …

CSE401 Au08 6



12/3/2008

2

Register Allocation

• Intermediate language uses unlimited temporary 

variables – this intentionally makes ICG easy 

• Target machine has fixed resources for representing 

locals plus other internal things such as stack pointer 

– MIPS, SPARC: 31 registers + 1 always-zero register 

– 68k: 16 registers, divided into data and address

– x86: 8 word-sized integer registers (with instruction-specific 

restrictions on use) plus a stack of floating-point data

• Registers are much faster than memory 

• Must use registers in load/store RISC machines 

Consequences

• Should try to keep values in registers if possible 

• Must reuse registers, implies free registers after use 

• Must handle more variables than registers, implies 

spill

• Interacts with instruction selection on CISC, implies 

it’s a real pain

CSE401 Au08 8

Classes of Registers

• Fixed/dedicated registers 

– Stack pointer, frame pointer, return address, ... 

– Claimed by machine architecture, calling convention, or 

internal convention for special purpose 

– Some registers may be overwritten by called procedures so 

caller must save them across calls, if allocated

• caller-saved registers vs. callee-saved registers 

• Scratch registers 

– registers kept around for temps (e.g., loading a spilled value 

from memory to operate on it)

• Free registers

– remaining registers free for register allocator to use

Classes of Variables

• What variables can the allocator put in registers? 

• Temporary variables: easy to allocate 

– Defined and used exactly once, during expression 

evaluation, implies allocator can free up register when done

– Usually not too many in use at one time implies less likely to 

run out of registers

• Local variables: hard, but doable 

– need to determine last use of variable to free register 

– can easily run out of registers so must make decision about 

which variables get register allocation 

– what about assignments to local through pointer? 

– what about debugger? 

• Global variables: really hard, but doable as a research project  

Register Allocation in MiniJava

• Allocate all local variables to stack locations

– No need for analysis to find last use of local 

variables

– Each read of the local variable translated into a 

load from stack

– Each assignment to a local translated to a store 

into its stack location 

Register Allocation in MiniJava

• Each IL expression has exactly one use so can 

allocate result value of IL expression to register 

– Maintain set of allocated registers 

– Allocate an unallocated register for each 

expression result 

– Free register when done with expression result 

– Not too many IL expressions "active" at a time 

implies unlikely to run out of registers, even on 

x86 

• MiniJava compiler dies if it runs out of registers 

for IL expressions

CSE401 Au08 12



12/3/2008

3

Register Allocation in MiniJava

• X86 register allocator

– eax, ebx, ecx, edx: allocatable, caller-save 

registers 

– esi, edi: scratch registers 

– esp: stack pointer; ebp: frame pointer 

– floating-point stack, for double values

CSE401 Au08 13

Stack Frame Layout

• Need space for

– formals 

– local variables 

– return address 

– (maybe) dynamic link (ptr

to calling stack frame) 

– (maybe) static link (ptr to 

lexically-enclosing stack 

frame) 

– other run-time data (e.g. 

caller-saved registers)

• Assign dedicated 

register(s) to support 

access to stack frames 

– FP: ptr to beginning of 

stack frame (fixed) 

– SP: ptr to end of stack 

(can move) 

• All data in stack frame 

is at fixed, statically 

computed offset from 

FP

– Compute all offsets 

solely from symbol tables

MiniJava/X86

stack frame layout formal N

formal N-1

…

formal 1

return address

caller’s frame ptr

caller-saved 

registers

local M

local M-1

…

local 1

arg  K

arg  K-1

…

arg  1

..caller’s frame.. high addresses

low addresses

stack 

grows 

down

Frame pointer

Stack pointer

Calling Conventions

• Need to define responsibilities of caller and callee in 

setting up, tearing down stack frame 

• Only caller can do some things 

• Only callee can do other things 

• Some things could be done by both 

• So, need a protocol – just like in the IL

X86 Calling Sequence

Caller: 

• evaluates actual arguments, pushes them on stack 

– in right-to-left order, to support C varargs

– alternative: 1st k arguments in registers 

• saves caller-save registers in caller’s stack 

• executes call instruction 

– return address pushed onto the stack by hardware 

Callee: 

• pushes caller’s frame pointer on stack 

– the dynamic link 

• sets up callee’s frame pointer 

• allocates space for locals, caller-saved registers 

– order doesn’t matter to calling convention 

• starts running callee’s code... 

formal N

formal N-1

…

formal 1

return address

caller’s frame ptr

caller-saved 

registers

local M

local M-1

…

local 1

arg  K

arg  K-1

…

arg  1

..caller’s frame..

Frame pointer

Stack pointer

X86 return sequence

Callee: 
• puts returned value in right place (eax or floating-

point stack) 

• deallocates space for locals, caller-saved regs

• pops caller’s frame pointer from stack 

• pops return address from stack and jumps to it 

Caller: 

• deallocates space for args

• restores caller-saved registers from caller’s stack 

• continues execution in caller after call...

formal N

formal N-1

…

formal 1

return address

caller’s frame ptr

caller-saved 

registers

local M

local M-1

…

local 1

arg  K

arg  K-1

…

arg  1

..caller’s frame..

Frame pointer

Stack pointer



12/3/2008

4

Instruction Selection

• Given one or more IL instructions, pick “best” 

sequence of target machine instructions with same 

semantics 

• “best” = fastest, shortest, lowest power, ... 

• Correctness a big issue, particularly if codegen is 

complex

Codegen difficulty depends on target

• RISC: easy 

– usually only one way to do something 

– closely resembles IL instructions 

• CISC: hard to do well 

– lots of alternative instructions with similar semantics 

– lots of possible operand addressing modes 

– lots of tradeoffs among speed, size 

– simple RISC-like translation may not be very efficient 

• C: easy, as long as C appropriate for desired semantics 

– can leave optimizations to C compiler 

CSE401 Au08 20

Example

IL code: 
t3 = t1 + t2;

Target code (MIPS): 

add $3,$1,$2

Target code (SPARC): 
add %1,%2,%3 

Target code (68k): 
mov.l d1,d3 

add.l d2,d3

Target code (x86): 
movl %eax,%ecx

addl %ebx,%ecx

One IL instruction may expand to several target instructions 

Another Example

IL code: 
t1 = t1 + 1; 

Target code (MIPS): 
add $1,$1,1 

Target code (SPARC): 
add %1,1,%1 

Target code (68k): 

add.l #1,d1 …or… 

inc.l d1

Target code (x86): 
addl $1,%eax …or… 

incl %eax

Can have choices: requires making decisions

Yet another example

IL code: 
// push x onto stack 

sp = sp - 4; 

*sp = t1;

Target code (MIPS): 
sub $sp,$sp,4 

sw $1,0($sp) 

Target code (SPARC): 
sub %sp,4,%sp 

st %1,[%sp+0]

Target code (68k): 
mov.l d1,-(sp) 

Target code (x86): 

pushl %eax

Several IL instructions can combine to one target instruction 

Instruction Selection in MiniJava

• Expand each IL statement into some number of target machine  

instructions 

– don’t attempt to combine IL statements together 

• In Target subdirectory: abstract classes Target and Location

– define abstract methods for emitting machine code for statements 
and data access: emitVarAssign, emitFieldAssign, 

emitBranchTrue, emitVarRead, emitFieldRead, 

emitIntMul, … 

– return Location representing where result is allocated 

• IL statement and expression classes invoke these operations to 

generate their machine code 

– each IL statement and expression has a corresponding emit 
operation on the Target class 

• Details of target machines are hidden from IL and the rest of the 
compiler behind the Target and Location interfaces



12/3/2008

5

Implementing Target and Location

• A particular target machine provides a concrete subclass of 
Target, plus concrete subclasses of Location as needed 

• For example, in Target/X86 subdirectory: 

– class X86Target extends Target

– class X86Register extends Location

• for expressions whose results are in (integer) registers 

– class X86FloatingPointStack extends Location

• for expressions whose results are pushed on the floating-

point stack 

– class X86ComparisonResult extends Location

• for boolean expressions whose results are in condition 

codes 

• Could define Target/MIPS,Target/C, etc.

An Example X86 emit method

Location emitIntConstant(int value) { 

Location result_location = 

allocateReg(ILType.intILType()); 

emitOp("movl",

intOperand(value),       

regOperand(result_location)); 

return result_location; 

} 

Location allocateReg(ILType):

allocate a new register to hold a value of the given type 

void emitOp(String opname, String arg1, ...):

emit assembly code 

String intOperand(int):

return the asm syntax for an int constant operand 

String regOperand(Location):

return the asm syntax for a reference to a register

An Example X86 Target emit method

• What x86 code to generate for arg1 +.int arg2? 

• x86 int add instruction: addl %arg, %dest

– semantics: %dest = %dest + %arg; 

• emit arg1 into register%arg1

• emit arg2 into register%arg2

• then?

An Example X86 Target emit method

Location emit IntAdd(ILExprarg1,ILExprarg2) { 

Location arg1_location=arg1.codegen(this); 

Location arg2_location=arg2.codegen(this); 

emitOp("addl",

regOperand(arg2_location),        

regOperand(arg1_location)); 

deallocateReg(arg2_location); 

return arg1_location; 

} 

void deallocateReg(Location):

deallocate register, 

make available for use by later instructions

An Example X86 Target emit method

• What x86 code to generate for var read or 

assignment? 

• Need to access var’s home stack location 

• x86 stack reference operand: %ebp(offset) 

– semantics: *(%ebp + offset); 

– %ebp = frame pointer

An Example X86 Target emit method

Location emitVarRead(ILVarDecl var) { 

int var_offset = var.getByteOffset(this); 

ILType var_type = var.getType(); 

Location result_location = 

allocateReg(var_type); 

emitOp("movl",

ptrOffsetOperand(FP, var_offset),        

regOperand(result_location)); 

return result_location; 

} 



12/3/2008

6

Continued

void emitVarAssign(ILVarDecl var,

Location rhs_location) { 

int var_offset = var.getByteOffset(this); 

emitOp("movl",

regOperand(rhs_location),

ptrOffsetOperand(FP, var_offset)); 

} 

String ptrOffsetOperand(Location, int):

return the asm syntax for a reference to a "ptr + offset" memory 
location

CSE401 Au08 31

An Example X86 Target emit method

void emitAssign(ILAssignableExpr lhs,                 

ILExpr rhs) { 

Location rhs_location =   

rhs.codegen(this); 

lhs.codegenAssign(rhs_location, this); 

deallocateReg(rhs_location); 

}

Each ILAssignableExpr implements codegenAssign

• invokes appropriate emitAssign operation, 

e.g. emitVarAssign

Generation for Comparisons

• What code to generate for arg1 <.int arg2

• MIPS: use an slt instruction to compute boolean-

valued int result into a register 

• x86 (and most other machines): no direct instruction 

• Have comparison instructions, which set condition 

codes 

– e.g. cmpl %arg2, %arg1 

• Later conditional branch instructions can test 

condition codes 

– e.g. jl, jle, jge, jg, je, jne label 

• What instructions to generate? 

Generation for Compares

Location emitIntLessThanValue(ILExpr arg1,ILExpr arg2) { 

Location arg1_location=arg1.codegen(this); 

Location arg2_location=arg2.codegen(this); 

emitOp("cmpl",regOperand(arg2_location),…);        

deallocateReg(arg1_location);…

Location result_location = 

allocateReg(ILType.intILType());

String true_label = getNewLabel(); 

emitOp("jl", true_label); 

emitOp("movl", intOperand(0),regOperand(result_location));         

String done_label = getNewLabel(); 

emitOp("jmp", done_label); 

emitLabel(true_label); 

emitOp("movl", intOperand(1),regOperand(result_location)); 

emitLabel(done_label); 

return result_location; 

} 

Generation for Branch

• What code to generate for 
iftrue test goto label

void emitConditionalBranchTrue(ILExpr

test,ILLabeltarget){ 

Location test_location=test.codegen(this); 

emitOp("cmpl", intOperand(0),        

regOperand(test_location)); 

emitOp("jne", target.getName()); 

}

Generation for Branch

• What is generated for 

iftrue arg1 <.int arg2 goto label

<emit arg1 into %arg1> 

<emit arg2 into %arg2> 

cmpl %arg2, %arg1 

jl true_label

movl $0, %res 

jmp done_label

true_label: 

movl $1, %res 

done_label: 

cmpl $0, %res 

jne label

• Can we do better? 



12/3/2008

7

Optimized Branches

• Idea: boolean-valued IL expressions can be 

generated two ways, depending on their consuming 

context 

– for their value or for their condition code

• Existing code gen operation on IL expression 

produces its value  

• New codegenTest operation on IL expression 

produces its condition code 

– X86ComparisonResultLocation represents 

this result 

• Now conditional branches can evaluate their test 

expression in the "for condition code" style 

Optimized Branches

void emitConditionalBranchTrue(ILExpr test, 

ILLabeltarget){ 

Location test_location=test.codegen(this); 

X86ComparisonResultLoc cc = 

(X86ComparisonResultLoc) test_location; 

emitOp("j" + cc.branchTrueOp(),        

target.getName()); 

}

IL codegenTest Default Behavior

class ILExpr extends ILExpr { 

... 

Location codegenTest(Target target) { 

return target.emitTest(this); 

} 

} 

In X86Target class: 

Location emitTest(ILExpr arg) { 

Location arg_location = arg.codegen(this); 

emitOp("cmpl", intOperand(0),        

regOperand(arg_location)); 

deallocateReg(arg_location); 

return new X86ComparisonResultLoc("ne"); 

}

IL codegenTest Specialized Behavior

class ILIntLessThanExpr extends ILExpr { 

… 

Location codegenTest(Target target) { 

return target.emitIntLessThanTest(arg1, arg2); 

} 

} 

In X86Target class: 

Location emitIntLessThanTest(ILExpr arg1,ILExpr arg2) {                     

Location arg1_location=arg1.codegen(this); 

Location arg2_location=arg2.codegen(this); 

emitOp("cmpl",regOperand(arg2_location),  …);      

deallocateReg(arg1_location); 

…

return new X86ComparisonResultLoc("l"); 

}

Register Allocation: Cool Algorithm

• How to convert the infinite sequence of temporary 

data references, t1, t2, … into finite assignment 

register numbers $8, $9, …, $25

• Goal: Use available registers with minimum spilling

• Problem: Minimizing the number of registers is NP-

complete … it is equivalent to chromatic number--

minimum colors to color nodes of graph so no edge 

connects same color

Begin With Data Flow Graph

• procedure-wide register allocation

• only live variables require register storage

• two variables(values) interfere when their live ranges 

overlap

dataflow analysis: a variable is live at node N if 
the value it holds is used on some path further 
down the control-flow graph; otherwise it is dead



12/3/2008

8

Live Variable Analysis

a := read();

b := read();

c := read();

d := a + b*c;

d < 10

e := c+8;

print(c);

f := 10;

e := f + d;

print(f);

print(e);

f

c

e

e

a

b

d

a := read();

b := read();

c := read();

d := a + b*c;

if (d < 10 ) then

e := c+8;

print(c);

else

f := 10;

e := f + d;

print(f);

fi

print(e);

Register Interference Graph

a := read();

b := read();

c := read();

d := a + b*c;

d < 10

e := c+8;

print(c);

f := 10;

e := f + d;

print(f);

print(e);

f

c

e

e

a

b

d

a b

e

dc

f

Graph Coloring

• NP complete problem

• Heuristic: color easy nodes last

– find node N with lowest degree

– remove N from the graph

– color the simplified graph 

– set color of N to the first color that is not used by 

any of N’s neighbors

• Basics due to Chaitin (1982)

a b

e

dc

f

Apply Heuristic

a b

e

dc

f

a b

e

dc

f

Apply Heuristic

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Apply Heuristic

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f



12/3/2008

9

Continued

a b

e

dc

f

a b

e

dc

f

Continued

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

a b

e

dc

f

a b

e

dc

f

Continued

a b

e

dc

f

a b

e

dc

f

a b

e

dc

f

Continued

a b

e

dc

f



12/3/2008

10

Continued

a b

e

dc

f

a b

e

dc

f

Final Assignment

a b

e

dc

f

a := read();

b := read();

c := read();

d := a + b*c;

if (d < 10 ) then

e := c+8;

print(c);

else

f := 10;

e := f + d;

print(f);

fi

print(e);

What is the O(running time)?

• Acceptable?

CSE401 Au08 57

Example: for small groups

given that a and b are live on entry and dead on exit,

and that x and y are live on exit:

(a) construct the register interference graph

(b) color the graph; how many registers are needed?

{  int tmp_2ab = 2*a*b;

int tmp_aa = a*a;

int tmp_bb = b*b;

x := tmp_aa + tmp_2ab + tmp_bb;

y := tmp_aa - tmp_2ab + tmp_bb;

}

4 Registers Needed

a tmp_2ab

tmp_bb

x y

tmp_aab

Code Generation Summary

• Code generation is 

– Machine specific

– Error prone

– Least “elegant” of the compilation process

• Code generation is 

– Place where key transformation takes place in the 

compiler

– Most visible impact on performance



12/3/2008

11

Generation to Optimization: data-flow

• The data-flow analysis sketched for register allocation via 

coloring gives a feel for many of the techniques at the basis of 

optimization

• Data-flow analysis gathers information about the possible set of 

values calculated at various points in program, using a control-

flow graph (CFG) representation

• Data-flow analysis usually works by setting up dataflow 

equations for the CFG node, solving these equations by 

reaching a fixpoint

– Due to Kildall (1973) – UW CSE PhD #7 (1972)

CSE401 Au08 61

Sensitivity

• Data-flow analysis is flow-sensitive – the order of 

statement in the CFG matters

• But almost always path-insensitive – doesn’t consider 

the values of predicates at conditionals

• Can be context-sensitive – that is, some analyses 

care about which calling context occurs

CSE401 Au08 62

Forward data-flow

• The classic example of data-flow analysis is reaching 

definitions – which definitions may reach a given 

point in the code

• Dataflow equations for each block in CFG

– Reachin[S] = ppred(S)Reachout[p]

– Reachout[S] = Gen[S](Reachin[S] – Kill [S])

• Need

– Gen[d: y is assigned] = {d}

– Kill[d: y is assigned] = Defs[y] – {d}

• Defs[y] is the set of definitions that assign to y
CSE401 Au08 63

Boring Example (wikipedia)

1: if b==4 then

2:    a = 5;

3: else 

4:    a = 3;

5: endif

6:

7: if  a < 4 then

8:    ...

CSE401 Au08 64

Another example: from Stanford web

CSE401 Au08 65

D0: y = 3

D1: x = 10

D2: y = 11

If e

D3: x = 1

D4: y = 2

D5: z = x

D6: x = 4

B0

B1 B2

CSE401 Au08 66

For all s ∈ Sasgn, sa ∈ Salloc, se ∈ Sentry, i ∈ I :

[JOIN] Res(•s) i = Fs∈pred(s) Res(s•) i

[TRANSF] Res(s•) i = Fi∈I ([[s]](ρ, (i, Res(•s) i))) i

[ALLOC] Res(sa•) ia  ha, where [[sa]]gen(ρ) = (ia, ha)

[ENTRY] Res(•se) i  ao i



12/3/2008

12

CSE401 Au08 67


