
Project 2: The MiniJava Parser
Due: Wednesday, February 7, 12:30 pm, by turn-in.

In this assignment you will extend the initial MiniJava parser and AST representation
with the extensions described in the course project description handout.

You should extend MiniJava's syntax to allow the following (all of which are legal in full
Java too):

 double is a legal (base) type.
 A floating-point literal constant is a legal expression.
 An array of a base type, e.g., int[], boolean[][][], and in general

type[] where type is an arbitrary base type, is a legal (base) type. (Base types
are ints, booleans, doubles, and arrays of base types. Only class types are not base
types; this restriction is included only because otherwise the language becomes
too hard to parse! The AST and the rest of the compiler should not depend on this
restriction against arrays of class types, however.)

 A one-level array allocation expression, e.g., new int[10], new
boolean[20][][], and in general new type[expr]dims where type is
an arbitrary non-array base type, expr is an arbitrary expression, and dims is a
possibly-empty sequence of []'s, is a legal expression.

 An array dereference, e.g., a[i], b[i][j][k], and in general
expr1[expr2] where expr1 is an arbitrary atomic expression and expr2 is
an arbitrary expression, is a legal expression. An array dereference is also legal on
the left-hand side of an assignment statement. (Atomic expressions EXclude
unary and binary operator expressions and array allocation expressions.)

 An array length expression, e.g., a.length and in general expr.length
where expr is an arbitrary atomic expression, is a legal expression. length is a
reserved word in MiniJava (unlike Java).

 An or expression (using the || infix operator) is a legal expression.
 if statements do not require else clauses.
 For loops of the restricted form for (i = expr1; expr2; i = expr3)

stmt are allowed, where expr1, expr2, and expr3 are arbitrary expressions,
i is an arbitrary variable (but which has to be the same variable in both the
initialization and increment clauses, and stmt is an arbitrary statement.

 break statements are allowed. (You do not need to check in the syntax that
break statements only appear inside of loops; semantic checking will enforce
this.)

 A class variable declaration may be preceded by the static reserved word to
declare a static class variable.

You should follow the precedence and associativity rules of regular Java for these
extensions. It's OK to use CUP's predecence declarations to achieve this.

It's OK to have one shift/reduce conflict in your CUP grammar, for the "dangling else"
problem. Add the "-expect 1" option before the minijava.cup argument in the
Makefile to build Parser/parser.java if you decide to accept this shift/reduce
conflict. (FYI, in making my sample solution, I couldn't find a way to revise the CUP
grammar specification to avoid this conflict.)

You should add new AST classes and/or modify existing AST classes so that you can
represent the new MiniJava constructs. You should define the appropriate toString
operations on these classes so that they can be pretty-printed in a form that is
syntactically legal and produces the same AST if it is parsed again. The other operations
required of AST nodes, e.g. typechecking, evaluating, and lowering, you should
implement by throwing UnimplementedError exceptions.

You only need to get the parser to work (and keep the extended scanner working). You
do not need to do anything to enforce type checking rules or other semantic-analysis
constraints on the input program.

Do the following:

1. Extend this specification of MiniJava's syntactic structure to describe the
extended language, in the same style. (You can assume precedence and
associativity is specified separately, and it is OK to define a grammar that is
ambiguous with respect to the "dangling else" problem.)

2. Add and/or modify classes in the AST subdirectory to represent the extended
language.

3. Extend Parser/minijava.cup to parse the extended language and construct
the abstract syntax tree representing the parsed program.

4. Develop test cases that demonstrate that your extended parser and AST classes
work, both in cases that should now be syntactically legal and in cases that should
still be syntactically illegal. (Since the parser quits at the first error, you'll likely
need several illegal test case files to test the different illegal cases.) You do not
need to check for lexical errors, just syntactic errors. The SamplePrograms
directory contains some files that should parse after you make your changes; some
of the files should parse successfully with the initial version of the MiniJava
compiler.

You can use the -parse -printAST options to the MiniJava compiler to just run the
parsing phase and print out the AST that it builds. See the test_parser target in the
Makefile for an example, and feel free to make your own target(s) to make running the
tests you like easier and more mechanical.

Turn in the following:

1. Your extended MiniJava syntax specification.
2. Your modified minijava.cup file. Clearly identify your changes using

comments.
3. Your new and/or modified AST/*.java files. Clearly identify any

modifications using comments.
4. Your test cases, with names of the form name.legal.java for test cases that

should parse successfully and name.illegal.java for test cases that should
trigger syntax errors.

5. A transcript of running your parser and printing out the resulting AST on each of
your test cases (at least).

Create a single directory containing these files, and submit them electronically by the due
date.

