
1

CSE401 Introduction to Compiler 
Construction

Larry Snyder

Allen 584

CSE401: Intro to Compiler Construction

Goals
– Learn principles and practice of language translation

• Bring together theory and pragmatics of previous classes

• Understand compile-time vs run-time processing

– Study interactions among
• Language features

• Implementation efficiency

• Compiler complexity

• Architectural features

– Gain more experience with oo design
– Gain more experience with working in a team

– Gain experience working with SW someone else wrote

Administrivia

• Prerequisites: 322, 326, 341, 378

• Text: Engineering a Compiler, Cooper and 
Torczon, Morgan-Kaufmann 2004

• Course Web is the place to look for materials
– Sign up for mailing list

– Grading:
• Project 40%

• Homework 15%

• MT 15% Final 25%

• Class Participation 5% … it’s a cool topic, lock into it

Second Day Homework

Turn In (On Paper) A Small Profile of Yourself:

• Photo
• Email/Year/Major

• Free time activities

• An interesting fact about yourself

Project
• Start with a MiniJava complier in Java …

improve it
– Add:

• Comments
• Floating-point values
• Arrays
• Static (class) variables
• For loops
• Break Statements
• … And more

– Completed in stages over the term
– Strongly encouraged: Work in teams, but only if 

joint work,  not divided work

Grading Basis
•Correctness
•Clarity of design/impl
•Quality of test cases

Compiler Passes
Analysis 

of input program 
(front-end)

character 
stream

Lexical Analysis

Code Generation

Optimization

Intermediate 
Code Generation

Semantic Analysis

Syntactic Analysis

annotated 
AST

abstract 
syntax tree

token 
stream

target 
language

intermediate
form

intermediate
form

Synthesis 
of output program 

(back-end)



2

Example Compilation
Sample (extended) MiniJava program: Factorial.java
// Computes 10! and prints it out 

class Factorial { 

public static void main(String[] a) { 

System.out.println( 

new Fac().ComputeFac(10));     

} 

} 

class Fac { 

// the recursive helper function 

public int ComputeFac(int num) { 

int numAux; 

if (num < 1) 

numAux = 1; 

else numAux = num * this.ComputeFac(num-1);

return numAux; 

} 

}

First Step: Lexical Analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens 
– strip out whitespace & comments in the process 

Specifying tokens: Regular Expressions

Example: 
Ident ::= Letter AlphaNum* 

Integer ::= Digit+ 
AlphaNum ::= Letter | Digit 
Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z' 
Digit ::= '0' | ... | '9'

Second Step: Syntactic Analysis

“Parsing” -- Read in tokens, turn into a tree 
based on syntactic structure 
– report any errors in syntax

Specifying Syntax: Context-free 
Grammars

EBNF is a popular notation for CFG’s
Example: 
Stmt ::= if (Expr ) Stmt [else Stmt] 

| while (Expr ) Stmt 
| ID = Expr; 
| ... 

Expr ::= Expr + Expr | Expr < Expr | ... 
| ! Expr 
| Expr . ID ( [Expr {, Expr}] ) 
| ID 
| Integer 
| (Expr) 
| ... 

EBNF specifies concrete syntax of language; parser constructs tree 
of the abstract syntax of the language

Third Step: Semantic Analysis
“Name resolution and type checking”
• Given AST: 

– figure out what declaration each name refers to 
– perform type checking and other static consistency checks 

• Key data structure: symbol table 
– maps names to info about name derived from declaration 
– tree of symbol tables corresponding to nesting of scopes 

• Semantic analysis steps: 
1. Process each scope, top down 
2. Process declarations in each scope into symbol table for 

scope 
3. Process body of each scope in context of symbol table 



3

Fourth Step: Intermediate Code Gen

• Given annotated AST & symbol tables, translate into 
lower-level intermediate code

• Intermediate code is a separate language
– Source-language independent
– Target-machine independent

• Intermediate code is simple and regular
– Good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

Example
Int Fac.ComputeFac(*? this, int num) {

int t1, numAux, t8, t3, t7, t2, t6, t0;

t0 := 1;

t1 := num < t0;

ifnonzero t1 goto L0;

t2 := 1;

t3 := num - t2;

t6 := Fac.ComputeFac(this, t3);

t7 := num * t6;
numAux := t7;

goto L2;

label L0;

t8 := 1;

numAux := t8

label L2;

return numAux

}

Fifth Step: Target Machine Code Gen

Translate intermediate code into target code

• Need to do:
– Instruction selection: choose target instructions for 

(subsequences) of IR instructions
– Register allocation: allocate IR code variables to 

registers, spilling to memory when necessary
– Compute layout of each procedures stack frames 

and other runtime data structures
– Emit target code


