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CSE401 Introduction to Compiler 
Construction

Larry Snyder

Allen 584

CSE401: Intro to Compiler Construction

Goals
– Learn principles and practice of language translation

• Bring together theory and pragmatics of previous classes

• Understand compile-time vs run-time processing

– Study interactions among
• Language features

• Implementation efficiency

• Compiler complexity

• Architectural features

– Gain more experience with oo design
– Gain more experience with working in a team

– Gain experience working with SW someone else wrote

Administrivia

• Prerequisites: 322, 326, 341, 378

• Text: Engineering a Compiler, Cooper and 
Torczon, Morgan-Kaufmann 2004

• Course Web is the place to look for materials
– Sign up for mailing list

– Grading:
• Project 40%

• Homework 15%

• MT 15% Final 25%

• Class Participation 5% … it’s a cool topic, lock into it

Second Day Homework

Turn In (On Paper) A Small Profile of Yourself:

• Photo
• Email/Year/Major

• Free time activities

• An interesting fact about yourself

Project
• Start with a MiniJava complier in Java …

improve it
– Add:

• Comments
• Floating-point values
• Arrays
• Static (class) variables
• For loops
• Break Statements
• … And more

– Completed in stages over the term
– Strongly encouraged: Work in teams, but only if 

joint work,  not divided work

Grading Basis
•Correctness
•Clarity of design/impl
•Quality of test cases
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Example Compilation
Sample (extended) MiniJava program: Factorial.java
// Computes 10! and prints it out 

class Factorial { 

public static void main(String[] a) { 

System.out.println( 

new Fac().ComputeFac(10));     

} 

} 

class Fac { 

// the recursive helper function 

public int ComputeFac(int num) { 

int numAux; 

if (num < 1) 

numAux = 1; 

else numAux = num * this.ComputeFac(num-1);

return numAux; 

} 

}

First Step: Lexical Analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens 
– strip out whitespace & comments in the process 

Specifying tokens: Regular Expressions

Example: 
Ident ::= Letter AlphaNum* 

Integer ::= Digit+ 
AlphaNum ::= Letter | Digit 
Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z' 
Digit ::= '0' | ... | '9'

Second Step: Syntactic Analysis

“Parsing” -- Read in tokens, turn into a tree 
based on syntactic structure 
– report any errors in syntax

Specifying Syntax: Context-free 
Grammars

EBNF is a popular notation for CFG’s
Example: 
Stmt ::= if (Expr ) Stmt [else Stmt] 

| while (Expr ) Stmt 
| ID = Expr; 
| ... 

Expr ::= Expr + Expr | Expr < Expr | ... 
| ! Expr 
| Expr . ID ( [Expr {, Expr}] ) 
| ID 
| Integer 
| (Expr) 
| ... 

EBNF specifies concrete syntax of language; parser constructs tree 
of the abstract syntax of the language

Third Step: Semantic Analysis
“Name resolution and type checking”
• Given AST: 

– figure out what declaration each name refers to 
– perform type checking and other static consistency checks 

• Key data structure: symbol table 
– maps names to info about name derived from declaration 
– tree of symbol tables corresponding to nesting of scopes 

• Semantic analysis steps: 
1. Process each scope, top down 
2. Process declarations in each scope into symbol table for 

scope 
3. Process body of each scope in context of symbol table 
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Fourth Step: Intermediate Code Gen

• Given annotated AST & symbol tables, translate into 
lower-level intermediate code

• Intermediate code is a separate language
– Source-language independent
– Target-machine independent

• Intermediate code is simple and regular
– Good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

Example
Int Fac.ComputeFac(*? this, int num) {

int t1, numAux, t8, t3, t7, t2, t6, t0;

t0 := 1;

t1 := num < t0;

ifnonzero t1 goto L0;

t2 := 1;

t3 := num - t2;

t6 := Fac.ComputeFac(this, t3);

t7 := num * t6;
numAux := t7;

goto L2;

label L0;

t8 := 1;

numAux := t8

label L2;

return numAux

}

Fifth Step: Target Machine Code Gen

Translate intermediate code into target code

• Need to do:
– Instruction selection: choose target instructions for 

(subsequences) of IR instructions
– Register allocation: allocate IR code variables to 

registers, spilling to memory when necessary
– Compute layout of each procedures stack frames 

and other runtime data structures
– Emit target code


