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Building An Interpreter

After having done all of the analysis, 
it’s possible to run the program directly 
rather than compile it … and it may be 

worth it
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Implementing A Language

Given type-checked AST program representation: 
• might want to run it 
• might want to analyze program properties 
• might want to display aspects of program on screen for user 
• ... 

To run program: 
• can interpret AST directly 
• can generate target program that is then run recursively 

Tradeoffs: 
• time till program can be executed (turnaround time) 
• speed of executing program 
• simplicity of implementation 
• flexibility of implementation

Interpreters

Create data structures to represent run-time 
program state 
– values manipulated by program 
– activation record (a\k\a stack frame) for each 

called method 
– environment to store local variable bindings 
– pointer to lexically-enclosing activation 

record/environment (static link) 
– pointer to calling activation record (dynamic link) 

• EVAL loop executing AST nodes

Pros and Cons of Interpretation

+ simple conceptually, easy to implement 
• fast turnaround time 

• good programming environments 

• easy to support fancy language features 

- slow to execute 
• data structure for value vs. direct value 

• variable lookup vs. registers or direct access 

• EVAL overhead vs. direct machine instructions 

• no optimizations across AST nodes

Compilation

Divide interpreter work into two parts: 
• compile-time 

• run-time 

Compile-time does preprocessing 
• perform some computations at compile-time once 
• produce an equivalent program that gets run many times 

Only advantage over interpreters: faster running 
programs
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Compile-time Processing

Decide representation of run-time data values

Decide where data will be stored 
• registers 
• format of stack frames 
• global memory 
• format of in-memory data structures (e.g. records, arrays) 

Generate machine code to do basic operations 
• just like interpreting expression, except generate code that will 

evaluate it later 

Do optimizations across instructions if desired

Compile-time vs Run-time

Dynamic linkCalling Procedure

Static linkLexically-enclosing 
scope

Memory location or 
register

Variable

Environment (contents 
of stack frame)

Scope, symbol table

Activation record/stack 
frame

Procedure

Run-timeCompile-time

Static Link vs Dynamic Link
class C { 

int x; 

boolean y; 

int f(int i) { 

int z;

... 

{ 

boolean x; 

C z; 

int f; 

...f(...) ... f(...)   ...

} 

...f(...)   ...

}

}

An Interpreter for MiniJava

In Environment subdirectory, two data 
structures: 

Data structure to represent run-time values: 
Value hierarchy 

– analogous to ResolvedType hierarchy 
Value

IntValue

BooleanValue

ClassValue

NullValue

MiniJava Interpreter [continued]

Data structure to store Value s for each variable: 
Environment hierarchy 
– analogous to Symbol Table hierarchy 
Environment

GlobalEnvironment

NestedEnvironment

ClassEnvironment

CodeEnvironment

MethodEnvironment

• evaluate methods for each kind of AST class

Activation Records

Each call of a procedure allocates an activation record 
(instance of Environment, somewhat poorly named) 

• Activation record stores: 
• mapping from names to Value s, for each formal and local 

variable in that scope (environment) 
• lexically enclosing activation record (static link) 

• Method activation record: also 
• calling activation record (dynamic link) 

• Class activation record: also 
• methods (to support run-time method lookup) 

• instance variable declarations, not values 
• values stored in class instances, i.e.,ClassValues
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Activation Records vs Symbol Tables

For each method/nested block scope in a 
program: 

• exactly one symbol table, storing types of names 
• possibly many activation records, one per invocation, each 

storing values of names 

For recursive procedures, 
• can have several activation records for same procedure on 

stack simultaneously 

All activation records have same “shape,”
described by single symbol table

Example

... 

class Fac { 

public int ComputeFac(int num) { 

int numAux; 

if (num < 1) { 

numAux = 1; 

} else { 

numAux = num * this.ComputeFac(num-1); 

} 

return numAux; 

} 

}


