Project 1: The MiniJava Scanner

Due: Friday, October 19, 12:30 pm.

In this assignment you will extend the initial MiniJava scanner with the extensions

described in the course project description handout. Specifically, MiniJava's lexical

structure should be extended as follows:

Comments are now allowed, and ignored. Two styles of comment are supported:
“//” toend of line, and /*. . .*/ unnested block comments.

[T

Underscores (*“_"") are now allowed in identifiers wherever letters are allowed.

Floating-point literals are allowed. A floating-point literal is an integer part
followed by either a fractional part, or an exponent part, or both. If both, then the
fractional part precedes the exponent part. The integer part is one or more digits.
A fractional part is a decimal point followed by one or more digits. An exponent
part is the letter E or e, followed by an optional + or —, followed by one or more
digits. (This is a restricted version of full Java's floating-point literal syntax.)
"double", "for", "break", and "1length" are new reserved words.

N| |H

1S a new operator.

In this assignment, you should only extend the scanner. You do not need to check for

syntactic or typechecking errors, nor do you need to extend the parser or any other parts

of the MiniJava compiler.

Do the following:

1.

Extend this specification of MiniJava's lexical structure to describe the extended

language, in the same style.
Extend Parser/minijava.cup and Scanner/minijava. jflex to scan
the new tokens and comments. (You can follow these directions to get a copy of

the initial MiniJava compiler implementation and set up your own SVN system.)
Develop test cases that demonstrate that your extended scanner works, both in
cases that should now be lexically legal and in cases that should still be lexically
illegal. (Since the scanner quits at the first error, you'll likely need several illegal
test case files to test the different illegal cases.) The SamplePrograms
directory contains some files that should scan after you make your changes; some
of the files should scan successfully with the initial version of the MiniJava
compiler.

http://www.cs.washington.edu/education/courses/cse401/CurrentQtr/assignments/overview.pdf
http://www.cs.washington.edu/education/courses/cse401/CurrentQtr/svn.html
http://www.cs.washington.edu/education/courses/cse401/CurrentQtr/assignments/MiniJavaLex.txt

You can use the —scan —-printTokens options to the MiniJava compiler to just run
the scanning phase and print out the tokens that it scans. See the test_scanner target
in the Makefile for an example, and feel free to make your own target(s) to make
running the tests you like easier and more mechanical.

Turn in the following:

1. Your extended MiniJava lexical specification.

2. Your modified minijava.cup and minijava. jflex files. Clearly identify
your changes using comments.

3. Your test cases, with names of the form name.legal. java for test cases that
should scan successfully and name.illegal. java for test cases that should
trigger lexical errors.

4. Afile name. t xt containing names of group members

Submit the above files using the turnin command. The project name is projl. Here's an

example:
turnin -c cse401 -p proj1 minijava.cup minijava.flex float.legal.java ...

See the_man page for additional details on turnin.

http://www.cs.washington.edu/htbin-post/man2html?1+turnin

	Project 1: The MiniJava Scanner

