Lexical Analysis

Lexical analysis is the first phase of
compilation: The file is converted from
ASCII to tokens. It must be fast!

Analysis Synthesis
Com ||er Passeg of input program of output program
p (front-end) (back-end)
—
stream
Intermediate
| Lexical Analysis | Code Generation
stream form
| Syntactic Analysis | | Optimization |
syntax tree form
| Semantic Analysis | | Code Generation |
AST language

Lexical Pass/Scanning

Purpose: Turn the character stream (program
input) into a token stream

» Token: a group of characters forming a basic,
atomic unit of syntax, such as a identifier,
number, etc.

* White space: characters between tokens that
is ignored

Why separate lexical / syntactic analysis

Separation of concerns / good design

— Sscanner:
» handle grouping chars into tokens
* ignore white space
» handle 1/0, machine dependencies

— parser:
» handle grouping tokens into syntax trees

Restricted nature of scanning allows faster
implementation
— scanning is time-consuming in many compilers

Complications to Scanning
Most languages today are free form

» Layout doesn’t matter

: do 10 i = 1,100
» White space separates tokens

...l oop code. ..
Alternatives 10 conti nue

* Fortran -- line oriented
» Haskell -- indentation and layout can imply grouping

Separating scanning from parsing is standard

Alternative: C/C++/Java: type vs identifier

» Parser wants scanner to distinguish between names that
are types and names that are variables

» Scanner doesn’t know how things are declared ... done
in semantic analysis, a\k\a type checking

Lexemes, tokens, patterns

Lexeme: group of characters that forms a pattern

Token: class of lexemes matching a pattern

» Token may have attributes if more than one lexeme is a
token

Pattern: typically defined using regular

expressions

» REs are the simplest class that’'s powerful enough for this
purpose

Languages and Language Specification

Alphabet: finite set of characters and symbols

String: a finite (possibly empty) sequence of characters
from an alphabet

Language: a (possibly empty or infinite) set of strings
Grammar: a finite specification for a set of strings

Language Automaton: an abstract machine accepting
a set of strings and rejecting all others

A language can be specified by many different
grammars and automata

A grammar or automaton specifies a single language

Classes of Languages

Regular languages specified by regular
expressions/grammars & finite automata
(FSASs)

Context-free languages specified by context-free
grammars and pushdown automata (PDAS)

Turing-computable languages are specified by
general grammars and Turing machines

all languages

turing complete

context -free
regular
| anguages

Syntax of Regular Expressions

» Defined inductively
— Base cases
* Empty string (g,)
e Symbol from the alphabet (e.g. x)
— Inductive cases
» Concatenation (sequence of two REs) : E;E,
 Alternation (choice of two REs): E, | E,
¢ Kleene closure (0 or more repetitions of RE): E*
* Notes
— Use parentheses for grouping
— Precedence: * is highest, then concatenate, | is lowest
— White space not significant

Notational Conveniences

« E* means 1 or more occurrences of E
« EXmeans exactly k occurrences of E
* [E] means 0 or 1 occurrences of E

* {E} means E*

* not(x) means any character in alphabet by x

* not(E) means any strings from alphabet
except those in E

» E,-E, means any string matching E; that’s not

in E,

» There is no additional expressive power here

Naming Regular Expressions

Can assign names to regular expressions
Can use the names in regular expressions

Example:
letter ::=a | b | | z
digit =0 1] | 9
al phanum ::= letter | num

Grammar-like notation for regular expression is
a regular grammar

Can reduce named REs to plain REs by “macro
expansion”

No recursive definitions allowed as in normal
context-free

Using REs to Specify Tokens

Identifiers
ident ::=letter (digit | letter)*
Integer constants
integer ::=digit*
sign ::=+ | -
signed_int ::= [sign] integer
Real numbers
real ::= signed_int [fraction] [exponent]
fraction ::= . digit*

exponent (E| e) signed_int

More Tokens

String and character constants

string ::=" char* "
character ::="' char '
char ::=not(" | " | \) | escape
escape ::=\("| " | V| n] r |t]|]Vv]|b]a)
White space
whi t espace ::= <space> | <tab> | <new ine> |
conment
commrent ::=/* not(*) *
Meta-Rules

Can define a rule that a legal program is a sequence of
tokens and white space:
program ::= (token | whitespace)*
token ::=ident | integer | real | string |
But this doesn’t say how to uniquely breakup a program
into its tokens -- it's highly ambiguous
E.G. what tokens to make out of hi 2bob
One identifier, hi 2bob?
Three tokes hi 2 bob?
Six tokens, each one character long?
The grammar states that it's legal, but not how to decide

Apply extra rules to say how to break up a string
Longest sequence wins

RE Specification of initial MiniJava Lex

Program ::= (Token | Witespace)*
Token ::= 1D | Integer | ReservedWrd | Operator |
Delimter

ID::= Letter (Letter | Digit)*

Letter ::=a | ... | z| A| ... | Z

Digit ::=01] ... | 9

Integer ::= Digit*

ReservedWrd: : = class | public | static | extends |
void | int | boolean | if | else |
while | return |true |false | this | new | String
| main | System.out.printin

Qperator ::=+| - | * | [/ | <| <=| >] >| ==
I= | && | !

Delimter ::=; | .|, [=1 Cl)l {0}l [1]

Building Scanners with REs

» Convert RE specification into a finite state
automaton (FSA)

» Convert FSA into a scanner implementation
— By hand into a collection of procedures
— Mechanically into a table-driven scanner

Finite State Automata

* A Finite State Automaton has
— A set of states
¢ One marked initial
¢ Some marked final
— A set of transitions from state to state
e Each labeled with an alphabet symbol or €

not(*,/)
o0l
k:Ot(*é @ *

— Operate by beginning at the start state, reading symbols and
making indicated transitions

— When input ends, state must be final or else reject

Determinism

* FSA can be deterministic or nondeterministic

» Deterministic: always know uniquely which edge to
take
— At most 1 arc leaving a state with a given symbol
— No g arcs

* Nondeterministic: may need to guess or explore
multiple paths, choosing the right one later

NFAs vs DFAs

* A problem:
— REs (e.g. specifications map easily to NFAS)
— Can write code for DFAs easily

* How to bridge the gap?
e Can it be bridged?

A Solution

* Cool algorithm to translate any NFA to a DFA
— Proves that NFAs aren’t any more expressive

* Plan:
1) Convert RE to NFA
2) Convert NFA to DFA
3) Convert DFA to code

» Can be done by hand or fully automatically

10

RE => NFA

Construct Cases Inductively

NFA => DFA

* Problem: NFA can “choose” among
alternative paths, while DFA must pick only
one path

» Solution: subset construction

— Each state in the DFA represents the set of states
the NFA could possibly be in

11

Subset Construction

Given NFA with states and transitions
— label all NFA states uniquely

Create start state of DFA

— label it with the set of NFA states that can be reached by €
transitions, i.e. w/o consuming input

— Process the start state
To process a DFA state S with label [S,,...,S/]

For each symbol x in the alphabet:

— Compute the set T of NFA states from S,...,S,, by an x
transition followed by any number of € transitions
— If T not empty
* |f a DFA state labeled [T] add an x transition from S to [T]
* Else create new DFA state [T] and add an x transition S to [T]

A DFA state is final iff at least one of the NFA states is

>

Subset
Construction Xa)yB)*+c)Ed)*+e) @)

12

To Tokens

» Every “final” symbol of a DFA emits a token

» Tokens are the internal compiler names for the
lexemes

== becomes equal

(becomes leftParen

private becomes private
* You choose the names

» Also, there may be additional data ... \r\n might
include line count

DFA => Code

* Option 1: Implement by hand using procedures
— one procedure for each token
— each procedure reads one character
— choices implemented using if and switch statements
* Pros
— straightforward to write
— fast
 Cons
— afair amount of tedious work
— may have subtle differences from the language specification

13

DFA => code [continued]

» Option 2: use tool to generate table driven parser
— Rows: states of DFA
— Columns: input characters
— Entries: action
* Go to next state
e Accept token, go to start state
e Error
* Pros
— Convenient
— Exactly matches specification, if tool generated
» Cons
— “Magic”
— Table lookups may be slower than direct code, but switch
implementation is a possible revision

Automatic Scanner Generation in
MiniJava

We use the j f | ex tool to automatically create a scanner
from a specification file, Scanner/ mi ni j ava. j fl ex

(We use the CUP tool to automatically create a parser
from a specification file, Par ser/ ni ni j ava. cup, which
also generates all of the code for the token classes
used in the scanner, via the Synbol class

The MiniJava Makef i | e automatically rebuilds the
scanner (or parser) whenever its specification file
changes

14

Symbol Class

Lexemes are represented as instances of class Symbol
class Synbol {
Int sym /1 which token class?
hj ect value; // any extra data for this |exene

}
A different integer constant is defined for each token
class in the symhelper class
class sym{
static int CLASS = 1;
static int | DENTIFIER = 2;
static int COWA = 3;

o
Can use this in printing code for Synbol s; see
synbol ToString in mnijava.jflex

Token Declarations

Declare new token classes in Par ser/ ni ni j ava. cup,
using t er m nal declarations
¢ include Java type if Synbol stores extra data

* Examples
/* reserved words: */
termnal CLASS, PUBLIC, STATIC, EXTENDS;

/* operators: */
term nal PLUS, MNUS, STAR, SLASH EXCLAI M

/* delimters: */
term nal OPEN_PAREN, CLOSE_PAREN
term nal EQUALS, SEM COLON, COWA, PERI OD;

/* tokens with val ues: */
termnal String | DENTIFIER;
termnal Integer | NT_LITERAL;

15

j f1 ex Token Specifications

Helper definitions for character classes and regular
expressions
letter = [a-z A-Z]
eol = [\r\n]
Simple) token definitions are of the form:
regexp { Java stnt }

regexp can be (at least):

a string literal in double-quotes, e.g. "cl ass", "<="

a reference to a named helper, in braces, e.g. {| etter}

a character list or range,in square brackets ,e.g.[a-z A-Z]

a negated character list or range, e.g. [\ r\ n]

. (which matches any single character)

° regexp regexp,regexp|regexp, regexp*, regexp+,
regexp?, (regexp)

j f1 ex Tokens [Continued]

Java stmt (the accept action) is typically:
e return synbol (sym CLASS); for a simple token

e return synbol (sym CLASS, yytext()); fora
token with extra data based on the lexeme
stringyytext()

» empty for whitespace

16

