CSEA401 Introduction to Compiler
Construction

Larry Snyder
Allen 584

CSE401: Intro to Compiler Construction

Goals
— Learn principles and practice of language translation
¢ Bring together theory and pragmatics of previous classes
¢ Understand compile-time vs run-time processing
Study interactions among
» Language features
¢ Implementation efficiency
e Compiler complexity
* Architectural features
Gain more experience with oo design
Gain more experience with working in a team
Gain experience working with SW someone else wrote




Administrivia
* Prerequisites: 303, 322, 326, 341, 378

» Text: Engineering a Compiler, Cooper and
Torczon, Morgan-Kaufmann 2004

* Course Web is the place to look for materials
— Sign up for mailing list
— Grading:
* Project 40%
* Homework 15%
« MT 15% Final 25%
 Class Participation 5% ... it's a cool topic, lock into it

Second Day Homework

Turn In (On Paper) A Small Profile of Yourself:
Photo

Email/Year/Major

Free time activities

An interesting fact about yourself




Project

» Start with a MiniJava complier in Java ...
improve it
— Add:

* Comments
 Floating-point values

* Arrays Grading Basis

* Static (class) variables eCorrectness

« For loops «Clarity of design/impl
* Break Statements «Quiality of test cases

e ... And more
— Completed in stages over the term

— Strongly encouraged: Work in teams, but only if
joint work, not divided work

Analysis Synthesis
Com p| ler Passes of input program of output program
(front-end) (back-end)

character
stream !

Intermediate

| Lexical Analysis | Code Generation
stream form

| Syntactic Analysis | | Optimization |

abstract

form

| Semantic Analysis | | Code Generation |

syntax tree

AST language




Example Compilation

Sample (extended) MiniJava program: Fact ori al . j ava
/1 Conputes 10! and prints it out
class Factorial {

public static void main(String[] a) {

System out . printl n(
new Fac() . Conput eFac(10));

}

}

class Fac {

/'l the recursive hel per function

public int ConputeFac(int num {
int numAux;
if (num< 1)

numAux = 1;

el se numAux = num * this. Conput eFac(num 1) ;
return numAux;

First Step: Lexical Analysis
“Scanning”, “tokenizing”

Read in characters, clump into tokens
— strip out whitespace & comments in the process




Specifying tokens: Regular Expressions

Example:
Ident ::= Letter AlphaNum*
Integer ::= Digit+
AlphaNum ::= Letter | Digit
Letter::="a'|...|'Z'|'A"| ... |'Z'
Digit :="'0"| ... | '9’

Second Step: Syntactic Analysis

“Parsing” -- Read in tokens, turn into a tree
based on syntactic structure
— report any errors in syntax




Specifying Syntax: Context-free
Grammars
EBNF is a popular notation for CFG’s

Example:

Stmt ::= if (Expr ) Stmt [else Stmt]
| while (Expr) Stmt
| ID = Expr;
[ ...

Expr ::= Expr + Expr | Expr < Expr | ...
| ! Expr
| Expr . ID ( [Expr {, Expr}])
| 1D
| Integer
| (Expr)
[ ...

EBNF specifies concrete syntax of language; parser constructs tree
of the abstract syntax of the language

Third Step: Semantic Analysis

“Name resolution and type checking”

* Given AST:
— figure out what declaration each name refers to
— perform type checking and other static consistency checks

» Key data structure: symbol table
— maps names to info about name derived from declaration
— tree of symbol tables corresponding to nesting of scopes

* Semantic analysis steps:
1. Process each scope, top down

2. Process declarations in each scope into symbol table for
scope
3. Process body of each scope in context of symbol table




Fourth Step: Intermediate Code Gen

» Given annotated AST & symbol tables, translate into
lower-level intermediate code

* Intermediate code is a separate language
— Source-language independent
— Target-machine independent

* Intermediate code is simple and regular
— Good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

Example

I nt Fac. ConputeFac(*? this, int num {
int t1, nunmAux, t8, t3, t7, t2, t6, tO;

t0 .= 1;

tl := num< tO;

i fnonzero t1 goto LO

t2 .= 1,

t3 := num- t2;

t6 : = Fac. Conput eFac(this, t3);

t7 := num* t6;
nunmAux := t7;
goto L2,

| abel LO;
t8 1= 1;
numiux :=1t8

| abel L2;
return numAux




Fifth Step: Target Machine Code Gen

Translate intermediate code into target code

* Need to do:

— Instruction selection: choose target instructions for
(subsequences) of IR instructions

— Register allocation: allocate IR code variables to
registers, spilling to memory when necessary

— Compute layout of each procedures stack frames
and other runtime data structures

— Emit target code




