
Lexical Analysis

Lexical analysis is the first phase of
compilation: The file is converted from

ASCII to tokens. It must be fast!

Compiler Passes
Analysis

of input program
(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

Lexical Pass/Scanning
Purpose: Turn the character stream (program

input) into a token stream
• Token: a group of characters forming a basic,

atomic unit of syntax, such as a identifier,
number, etc.

• White space: characters between tokens that
is ignored

Why separate lexical / syntactic analysis

Separation of concerns / good design
– scanner:

• handle grouping chars into tokens
• ignore white space
• handle I/O, machine dependencies

– parser:
• handle grouping tokens into syntax trees

Restricted nature of scanning allows faster
implementation
– scanning is time-consuming in many compilers

Complications to Scanning
• Most languages today are free form

• Layout doesn’t matter
• White space separates tokens

• Alternatives
• Fortran -- line oriented
• Haskell -- indentation and layout can imply grouping

• Separating scanning from parsing is standard
• Alternative: C/C++/Java: type vs idenifier

• Parser wants scanner to distinguish between names that
are types and names that are variables

• Scanner doesn’t know how things are declared … done
in semantic analysis, a\k\a type checking

do 10 i = 1,100
...loop code...

10 continue

do 10 i = 1,100
...loop code...

10 continue

Lexemes, tokens, patterns

Lexeme: group of characters that forms a pattern

Token: class of lexemes matching a pattern
• Token may have attributes if more than one lexeme is a

token

Pattern: typically defined using regular
expressions

• REs are the simplest class that’s powerful enough for this
purpose

Languages and Language Specification

Alphabet: finite set of characters and symbols
String: a finite (possibly empty) sequence of characters

from an alphabet
Language: a (possibly empty or infinite) set of strings
Grammar: a finite specification for a set of strings
Language Automaton: an abstract machine accepting

a set of strings and rejecting all others

A language can be specified by many different
grammars and automata

A grammar or automaton specifies a single language

Classes of Languages
Regular languages specified by regular

expressions/grammars & finite automata
(FSAs)

Context-free languages specified by context-free
grammars and pushdown automata (PDAs)

Turing-computable languages are specified by
general grammars and Turing machines

regular
languages

context -free

turing complete

all languages

Syntax of Regular Expressions

• Defined inductively
– Base cases

• Empty string (ε, ∈)
• Symbol from the alphabet (e.g. x)

– Inductive cases
• Concatenation (sequence of two REs) : E1E2

• Alternation (choice of two REs): E1 | E2

• Kleene closure (0 or more repetitions of RE): E*

• Notes
– Use parentheses for grouping
– Precedence: * is highest, then concatenate, | is lowest
– White space not significant

Notational Conveniences

• E+ means 1 or more occurrences of E
• Ek means exactly k occurrences of E
• [E] means 0 or 1 occurrences of E
• {E} means E*
• not(x) means any character in alphabet by x
• not(E) means any strings from alphabet

except those in E
• E1-E2 means any string matching E1 that’s not

in E2

• There is no additional expressive power here

Naming Regular Expressions

Can assign names to regular expressions
Can use the names in regular expressions
Example:

letter ::= a | b | ... | z

digit ::= 0 | 1 | ... | 9

alphanum ::= letter | num

Grammar-like notation for regular expression is
a regular grammar

Can reduce named REs to plain REs by “macro
expansion”
No recursive definitions allowed as in normal

context-free

Using REs to Specify Tokens

Identifiers
ident ::= letter (digit | letter)*

Integer constants
integer ::= digit+

sign ::= + | -

signed_int ::= [sign] integer

Real numbers
real ::= signed_int [fraction] [exponent]

fraction ::= . digit+

exponent ::= (E | e) signed_int

More Tokens

String and character constants
string ::= " char* "

character ::= ' char '

char ::= not(" | ' | \) | escape

escape ::= \ (" | ' | \ | n | r | t | v | b | a)

White space
whitespace ::= <space> | <tab> | <newline> |

comment

comment ::= /* not(*/) */

Meta-Rules
Can define a rule that a legal program is a sequence of

tokens and white space:
program ::= (token | whitespace)*
token ::= ident | integer | real | string | ...

But this doesn’t say how to uniquely breakup a program
into its tokens -- it’s highly ambiguous
E.G. what tokens to make out of hi2bob

One identifier, hi2bob?
Three tokes hi 2 bob?
Six tokens, each one character long?

The grammar states that it’s legal, but not how to decide
Apply extra rules to say how to break up a string

Longest sequence wins

RE Specification of initial MiniJava Lex
Program ::= (Token | Whitespace)*
Token ::= ID | Integer | ReservedWord | Operator |

Delimiter
ID ::= Letter (Letter | Digit)*
Letter ::= a | ... | z | A | ... | Z
Digit ::= 0 | ... | 9

Integer ::= Digit+

ReservedWord::= class | public | static | extends |
void | int | boolean | if | else |
while |return |true |false | this | new | String
| main | System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == |
!= | && | !

Delimiter ::= ; | . | , | = | (|) | { | } | [|]

Building Scanners with REs

• Convert RE specification into a finite state
automaton (FSA)

• Convert FSA into a scanner implementation
– By hand into a collection of procedures
– Mechanically into a table-driven scanner

Finite State Automata
• A Finite State Automaton has

– A set of states
• One marked initial

• Some marked final

– A set of transitions from state to state
• Each labeled with an alphabet symbol or ε

– Operate by beginning at the start state, reading symbols and
making indicated transitions

– When input ends, state must be final or else reject

/ *

not(*) *

not(*,/)

* /

Determinism

• FSA can be deterministic or nondeterministic
• Deterministic: always know uniquely which edge to

take
– At most 1 arc leaving a state with a given symbol

– No ε arcs

• Nondeterministic: may need to guess or explore
multiple paths, choosing the right one later

1

0

1

1

0 0

0

NFAs vs DFAs

• A problem:
– REs (e.g. specifications map easily to NFAs)
– Can write code for DFAs easily

• How to bridge the gap?

• Can it be bridged?

A Solution

• Cool algorithm to translate any NFA to a DFA
– Proves that NFAs aren’t any more expressive

• Plan:
1) Convert RE to NFA
2) Convert NFA to DFA
3) Convert DFA to code

• Can be done by hand or fully automatically

RE => NFA

Construct Cases Inductively
ε

x

E1 E2

E1 | E2

E*

ε

x

E1 E2ε

E1

E2

ε

ε ε

ε

Eε

ε

ε
ε

NFA => DFA

• Problem: NFA can “choose” among
alternative paths, while DFA must pick only
one path

• Solution: subset construction
– Each state in the DFA represents the set of states

the NFA could possibly be in

Subset Construction
Given NFA with states and transitions

– label all NFA states uniquely

Create start state of DFA
– label it with the set of NFA states that can be reached by ε

transitions, i.e. w/o consuming input
– Process the start state

To process a DFA state S with label [S1,…,Sn]
For each symbol x in the alphabet:

– Compute the set T of NFA states from S1,…,Sn by an x
transition followed by any number of ε transitions

– If T not empty
• If a DFA state has T as a label add an x transition from S to T
• Otherwise create a new DFA state T and add an x transition S to T

A DFA state is final iff at least one of the NFA states is

Subset
Construction a b/ *

Σ

ε d fc e* /

To Tokens

• Every “final” symbol of a DFA emits a token
• Tokens are the internal compiler names for the

lexemes
== becomes equal
(becomes leftParen
private becomes private

• You choose the names
• Also, there may be additional data … \r\n might

include line count

DFA => Code

• Option 1: Implement by hand using procedures
– one procedure for each token
– each procedure reads one character
– choices implemented using if and switch statements

• Pros
– straightforward to write
– fast

• Cons
– a fair amount of tedious work
– may have subtle differences from the language specification

DFA => code [continued]
• Option 2: use tool to generate table driven parser

– Rows: states of DFA
– Columns: input characters
– Entries: action

• Go to next state
• Accept token, go to start state
• Error

• Pros
– Convenient
– Exactly matches specification, if tool generated

• Cons
– “Magic”
– Table lookups may be slower than direct code, but switch

implementation is a possible revision

Automatic Scanner Generation in
MiniJava

We use the jflex tool to automatically create a scanner
from a specification file, Scanner/minijava.jflex

(We use the CUP tool to automatically create a parser
from a specification file, Parser/minijava.cup, which
also generates all of the code for the token classes
used in the scanner, via the Symbol class

The MiniJava Makefile automatically rebuilds the
scanner (or parser) whenever its specification file
changes

Symbol Class
Lexemes are represented as instances of class Symbol

class Symbol {
Int sym; // which token class?
Object value; // any extra data for this lexeme
...
}

A different integer constant is defined for each token
class in the sym helper class

class sym {
static int CLASS = 1;
static int IDENTIFIER = 2;
static int COMMA = 3;

...
}

Can use this in printing code for Symbols; see
symbolToString in minijava.jflex

Token Declarations
Declare new token classes in Parser/minijava.cup,

using terminal declarations
• include Java type if Symbol stores extra data

• Examples
/* reserved words: */

terminal CLASS, PUBLIC, STATIC, EXTENDS;

...

/* operators: */

terminal PLUS, MINUS, STAR, SLASH, EXCLAIM;

...

/* delimiters: */

terminal OPEN_PAREN, CLOSE_PAREN;

terminal EQUALS, SEMICOLON, COMMA, PERIOD;

...

/* tokens with values: */

terminal String IDENTIFIER;

terminal Integer INT_LITERAL;

jflex Token Specifications
Helper definitions for character classes and regular

expressions
letter = [a-z A-Z]

eol = [\r\n]

Simple) token definitions are of the form:
regexp { Java stmt }

regexp can be (at least):
• a string literal in double-quotes, e.g. "class", "<="
• a reference to a named helper, in braces, e.g. {letter}
• a character list or range,in square brackets ,e.g. [a-z A-Z]
• a negated character list or range, e.g. [^\r\n]
• . (which matches any single character)
• regexp regexp,regexp|regexp,regexp*,regexp+,
regexp?, (regexp)

jflex Tokens [Continued]

Java stmt (the accept action) is typically:
• return symbol(sym.CLASS); for a simple token
• return symbol(sym.CLASS,yytext()); for a

token with extra data based on the lexeme
stringyytext()

• empty for whitespace

