
Target Code Generation

Using the generated intermediate
code, covert to instructions and

memory characteristics of the target
machine.

Compiler
Passes

Analysis
of input program

(front-end)
character

stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

Target Code Generation

Input: intermediate language (IL)

Output: target language program
Target languages:

– absolute binary (machine) code
– relocatable binary code
– assembly code
– C

Target code generation must bridge the gap

The gap, if target is machine code

conditional branches based on condition
codes (maybe)

conditional branches based
on integers representing
Boolean values

instructions have restricted operand
addressing

statements can have
arbitrary subexpression
trees

machine instructionsstatements

calling conventions defining where arguments
& results are stored and which registers may
be overwritten by callee

built-in parameter passing &
result returning

fixed number of registers, of various
incompatible kinds, plus unbounded number
of stack locations

unbounded number of
interchangeable local
variables

global static memoryglobal variables

Machine CodeIL

Tasks of Code Generator
Register allocation

– for each IL variable, select register/stack location/global
memory location(s) to hold it

• can depend on type of data, which operations manipulate it

• Stack frame layout
– compute layout of each function’s stack frame

• Instruction selection
– for each IL instruction (sequence), select target language

instruction (sequence)
• includes operand addressing mode selection

• Can have complex interactions
– instruction selection depends on where operands are

allocated
– some IL variables may not need a register, depending on the

instructions & addressing modes that are selected

Register Allocation
Intermediate language uses unlimited temporary variables

• makes ICG easy

Target machine has fixed resources for representing
“locals” plus other internal things such as stack pointer

• MIPS, SPARC: 31 registers + 1 always-zero register
• 68k: 16 registers, divided into data and address regs
• x86: 8 word-sized integer registers (with a number of instruction-

specific restrictions on use) plus a stack of floating-point data
manipulated only indirectly

Registers are much faster than memory
Must use registers in load/store RISC machines
Consequences:

• should try to keep values in registers if possible
• must reuse registers, implies free registers after use
• must handle more variables than registers, implies spill
• Interacts with instruction selection on CISC, implies it’s a real pain

Classes of Registers
What registers can the allocator use?
Fixed/dedicated registers

• stack pointer, frame pointer, return address, ...
• claimed by machine architecture, calling convention, or internal

convention for special purpose
• not easily available for storing locals

• Scratch registers
• couple of registers kept around for temp values e.g. loading a

spilled value from memory in order to operate on it

• Allocatable registers
• remaining registers free for register allocator to exploit

• Some registers may be overwritten by called
procedures implies caller must save them across
calls, if allocated

• caller-saved registers vs. callee-saved registers

Classes of Variables
What variables can the allocator try to put in registers?
Temporary variables: easy to allocate

• defined & used exactly once, during expression evaluation
implies allocator can free up register when done

• usually not too many in use at one time implies less likely to run
out of registers

Local variables: hard, but doable
• need to determine last use of variable in order to free reg
• can easily run out of registers implies need to make decision

about which variables get register allocation
• what about assignments to local through pointer?
• what about debugger?

• Global variables:
• really hard, but doable as a research project

Register Allocation in MiniJava
Don’t do any analysis to find last use of local variables

implies allocate all local variables to stack locations
• each read of the local variable translated into a load from stack
• each assignment to a local translated to a store into its stack location

Each IL expression has exactly one use implies allocate
result value of IL expression to register

• maintain a set of allocated registers
• allocate an unallocated register for each expr result
• free register when done with expr result
• not too many IL expressions "active" at a time implies unlikely to run

out of registers, even on x86
• MiniJava compiler dies if it runs out of registers for IL expressions :(

• X86 register allocator:
• eax, ebx, ecx, edx : allocatable, caller-save registers
• esi, edi : scratch registers
• esp : stack pointer; ebp : frame pointer
• floating-point stack, for double values

Stack Frame Layout
Need space for

• formals
• local variables
• return address
• (maybe) dynamic link (ptr to calling stack frame)
• (maybe) static link (ptr to lexically-enclosing stack frame)
• other run-time data (e.g. caller-saved registers)

Assign dedicated register(s) to support access to stack
frames

• frame pointer (FP): ptr to beginning of stack frame (fixed)
• stack pointer (SP): ptr to end of stack (can move)

Key property: all data in stack frame is at fixed,
statically computed offset from FP

• easy to generate fast code to access data in stack frame, even
lexically enclosing stack frames

• compute all offsets solely from symbol tables

MiniJava/X86
stack frame layout

formal N
formal N-1

…

formal 1
return address

caller’s frame ptr

caller-saved
registers

local M
local M-1

…

local 1
arg K

arg K-1

…

arg 1

..caller’s frame.. high addresses

low addresses

stack
grows
down

Frame pointer

Stack pointer

Calling Conventions

Need to define responsibilities of caller and
callee in setting up, tearing down stack frame

Only caller can do some things

Only callee can do other things
Some things could be done by both

Need a protocol

X86 Calling Sequence
Caller:

– evaluates actual arguments, pushes them on stack
• in right-to-left order, to support C varargs
• alternative: 1st k arguments in registers

– saves caller-save registers in caller’s stack
– executes call instruction

• return address pushed onto the stack by hardware

Callee:
– pushes caller’s frame pointer on stack

• the dynamic link

– sets up callee’s frame pointer
– allocates space for locals, caller-saved registers

• order doesn’t matter to calling convention

– starts running callee’s code...

X86 return sequence

Callee:
– puts returned value in right place (eax or floating-point

stack)
– deallocates space for locals, caller-saved regs
– pops caller’s frame pointer from stack
– pops return address from stack and jumps to it

Caller:
– deallocates space for args
– restores caller-saved registers from caller’s stack
– continues execution in caller after call...

Instruction Selection
Given one or more IL instructions, pick “best” sequence

of target machine instructions with same semantics
“best” = fastest, shortest, lowest power, ...
Difficulty depends on nature of target instruction set

– RISC: easy
• usually only one way to do something
• closely resembles IL instructions

– CISC: hard to do well
• lots of alternative instructions with similar semantics
• lots of possible operand addressing modes
• lots of tradeoffs among speed, size
• simple RISC-like translation may not be very efficient

– C: easy, as long as C appropriate for desired semantics
• can leave optimizations to C compiler

Correctness a big issue, particularly if codegen complex

Example
IL code:

t3 = t1 + t2;

Target code (MIPS):
add $3,$1,$2

Target code (SPARC):
add %1,%2,%3

Target code (68k):
mov.l d1,d3

add.l d2,d3

Target code (x86):
movl %eax,%ecx

addl %ebx,%ecx

1 IL instruction may expand to several target
instructions

Another Example
IL code:

t1 = t1 + 1;

Target code (MIPS):
add $1,$1,1

Target code (SPARC):
add %1,1,%1

Target code (68k):
add.l #1,d1 …or…
inc.l d1

Target code (x86):
addl $1,%eax …or…
incl %eax

Can have choices
• it’s a pain to have choices; requires making decisions

Yet another example
IL code:

// push x onto stack
sp = sp - 4;

*sp = t1;

Target code (MIPS):
sub $sp,$sp,4
sw $1,0($sp)

Target code (SPARC):
sub %sp,4,%sp

st %1,[%sp+0]

Target code (68k):
mov.l d1,-(sp)

Target code (x86):
pushl %eax

Several IL instructions can combine to 1 target instruction

Instruction Selection in MiniJava
Expand each IL statement into some number of target machine

instructions
• don’t attempt to combine IL statements together

In Target subdirectory:
abstract class Target

abstract class Location

• defines abstract methods for emitting machine code for
statements,e.g. emitVarAssign , emitFieldAssign ,
emitBranchTrue

• defines abstract methods for emitting machine code for
statements, e.g. emitVarRead , emitFieldRead , emitIntMul

• return Location representing where result is allocated

IL statement and expression classes invoke these operations to
generate their machine code

• each IL stmt, expr has a corresponding emit operation on the
Target class

Details of target machines are hidden from IL and the rest of the
compiler behind the Target and Location interfaces

Implementing Target and Location
A particular target machine provides a concrete

subclass of Target , plus concrete subclasses of
Location as needed

E.g. in Target/X86 subdirectory:
class X86Target extends Target
class X86Register extends Location

• for expressions whose results are in (integer) registers
class X86FloatingPointStack extends Location

• for expressions whose results are pushed on the floating-point
stack

class X86ComparisonResult extends Location
• for boolean expressions whose results are in condition codes

Could define Target/MIPS ,Target/C , etc.

An Example X86 emit method
Location emitIntConstant(int value) {

Location result_location =
allocateReg(ILType.intILType());
emitOp("movl",

intOperand(value),
regOperand(result_location));

return result_location;
}

Location allocateReg(ILType):

allocate a new register to hold a value of the given type
void emitOp(String opname, String arg1, ...):

emit assembly code
String intOperand(int):

return the asm syntax for an int constant operand
String regOperand(Location):

return the asm syntax for a reference to a register

An Example X86 Target emit method

What x86 code to generate for arg1 +.int arg2 ?
x86 int add instruction: addl %arg, %dest

– semantics: %dest = %dest + %arg;

emit arg1 into register%arg1

emit arg2 into register%arg2

then?

An Example X86 Target emit method

Location emit IntAdd(ILExprarg1,ILExprarg2) {
Location arg1_location=arg1.codegen(this);
Location arg2_location=arg2.codegen(this);
emitOp("addl",

regOperand(arg2_location),
regOperand(arg1_location));

deallocateReg(arg2_location);
return arg1_location;

}

void deallocateReg(Location):

deallocate register,
make available for use by later instructions

An Example X86 Target emit method

What x86 code to generate for var read or assignment?
Need to access var’s home stack location
x86 stack reference operand: %ebp(offset)

• semantics: *(%ebp + offset);

• %ebp = frame pointer

An Example X86 Target emit method
Location emitVarRead(ILVarDecl var) {

int var_offset = var.getByteOffset(this);

ILType var_type = var.getType();

Location result_location =

allocateReg(var_type);

emitOp("movl",

ptrOffsetOperand(FP, var_offset),

regOperand(result_location));

return result_location;

}

void emitVarAssign(ILVarDecl var,

Location rhs_location) {

int var_offset = var.getByteOffset(this);

emitOp("movl",

regOperand(rhs_location),

ptrOffsetOperand(FP, var_offset));

}

String ptrOffsetOperand(Location, int):
return the asm syntax for a reference to a "ptr + offset" memory location

An Example X86 Target emit method

void emitAssign(ILAssignableExpr lhs,
ILExpr rhs) {

Location rhs_location =
rhs.codegen(this);

lhs.codegenAssign(rhs_location, this);

deallocateReg(rhs_location);

}

Each ILAssignableExpr implements codegenAssign

• invokes appropriate emitAssign operation,
e.g. emitVarAssign

Target Code Generation for Comparisons
What code to generate for arg1 <.int arg2 ?
• produce zero or non-zero int value into some result

register
MIPS: use an slt instruction to compute boolean-

valued int result into a register
x86 (and most other machines): no direct instruction
Have comparison instructions, which set condition

codes
– e.g. cmpl %arg2, %arg1

Later conditional branch instructions can test condition
codes
e.g. jl, jle, jge, jg, je, jne label

What code to generate?

Target Code Generation for Compares (1)

Location emitIntLessThanValue(ILExpr arg1,
ILExpr arg2) {

Location arg1_location=arg1.codegen(this);
Location arg2_location=arg2.codegen(this);
emitOp("cmpl",

regOperand(arg2_location),
regOperand(arg1_location));

deallocateReg(arg1_location);
deallocateReg(arg2_location);
Location result_location =

allocateReg(ILType.intILType());

Target Code Generation for Compars (2)

String true_label = getNewLabel();
emitOp("jl", true_label);
emitOp("movl", intOperand(0),

regOperand(result_location));
String done_label = getNewLabel();
emitOp("jmp", done_label);
emitLabel(true_label);
emitOp("movl", intOperand(1),

regOperand(result_location));
emitLabel(done_label);
return result_location;

}

Target Code Generation for Branch

What code to generate for iftrue test goto
label ?

Target Code Generation for Branch

void emitConditionalBranchTrue(ILExpr test,

ILLabeltarget){
Locationtest_location=test.codegen(this);

emitOp("cmpl", intOperand(0),

regOperand(test_location));

emitOp("jne", target.getName());

}

Target Code Generation for Branch (3)

What is generated for iftrue arg1 <.int arg2 goto
label ?

<emit arg1 into %arg1>
<emit arg2 into %arg2>
cmpl %arg2, %arg1
jl true_label
movl $0, %res
jmp done_label

true_label:
movl $1, %res

done_label:
cmpl $0, %res
jne label

Can we do better?

Optimized Code Gen for Branches(1)

Idea: boolean-valued IL expressions can be generated
two ways, depending on their consuming context
– for their value
– for their "condition code"

Existing code gen operation on IL expression produces
its value

New codegenTest operation on IL expression produces
its condition code
– X86ComparisonResultLocation represents this result

Now conditional branches evaluate their test expression
in the "for condition code" style

Optimized Code Gen for Branches (2)

void emitConditionalBranchTrue(ILExpr test,

ILLabeltarget){

Locationtest_location=test.codegen(this);

X86ComparisonResultLoc cc =

(X86ComparisonResultLoc) test_location;

emitOp("j" + cc.branchTrueOp(),

target.getName());

}

IL codegenTest Default Behavior

class ILExpr extends ILExpr {
...
Location codegenTest(Target target) {

return target.emitTest(this);
}

}

In X86Target class:
Location emitTest(ILExpr arg) {

Location arg_location = arg.codegen(this);
emitOp("cmpl", intOperand(0),

regOperand(arg_location));
deallocateReg(arg_location);
return new X86ComparisonResultLoc("ne");

}

IL codegenTest Specialized Behavior
class ILIntLessThanExpr extends ILExpr {

...

Location codegenTest(Target target) {

return target.emitIntLessThanTest(arg1, arg2);

}

}

In X86Target class:
Location emitIntLessThanTest(ILExpr arg1,

ILExpr arg2) {

Locationarg1_location=arg1.codegen(this);

Locationarg2_location=arg2.codegen(this);

emitOp("cmpl",

regOperand(arg2_location),

regOperand(arg1_location));

deallocateReg(arg1_location);

deallocateReg(arg2_location);

return new X86ComparisonResultLoc("l");

}

