Project 3: The MiniJava Typechecker

Due: Wednesday, May 10, 2005 at 12:30 pm.

In this assignment you will extend the initial MiniJava typechecker witletensions
described in theourse project description handout

You should complete the front-end processing for the extended MiniJava language,
checking any legality constraints not handled earlier in the scanningsangphases.
These include the following additions to the hierarchies in the SymbolTable package:

Extend theResol vedType hierarchy to support thdoubl e type.

Extend theResol vedType hierarchy to support the array type constructor,
which stores its element type. The array type constructor follows stlttpe
equivalence rules. MiniJava restricts Java by defining one array type to be a
subtype of another array type only when the two array types are equivalent.
Extend thevar | nt er f ace hierarchy to support static class variable
declarations.

You should implement typechecking for the new and/or modified AST node classes,
including the following:

Allow static class variables to be declared, so that they may be legfaltgmced

in variable reads and assignments.

Allow i f statements to omit the#l se clause.

Check that & or statement's loop index variable was previously declared to be an
i nt, that its initialization and update expressions returns, and that its test
expression returnsk@ool ean.

Check that &r eak statement only appears in the body ehal e orf or loop.

(You may change the interface of thent . t ypecheck operation to do this.)
Check that an o1 {) expression hasool ean operands.

Check that an array new expression has a size subexpressioniofitype

Check that an array length expression has an array subexpression that's an array
Check that an array lookup expression has an array subexpression that's an array
and an index subexpression that's ah.

Check that an array assignment statement has an array subexpressiom that's a
array, an index subexpression that's ah, and a right-hand-side expression

whose type is assignable to the array's element type.

Allow i nt s to be assignable toubl es, including in regular assignments, in

array assignments, in parameter passing into a method, and in returning from a
method.

« Allowthe+,-,*,/,<,<=>= > == and! = operations to also be applied to
doubl es, and, for binary operations, to mixed oft s anddoubl es.
- Allowthe Syst em out . pri nt | n operation to also be applied talaubl e.

In all cases, as long as the MiniJava restrictions are satisfied, 2aVanexpression
should have the same result type as the equivalent Java expression.

You only need to get the compiler front-end to work. You do not need to implement any
back-end lowering or code generation.

Do the following:

1. Add and/or modify classes in the AST and SymbolTable subdirectories to
typecheck the extended language.

2. Develop test cases that demonstrate that your extended typechecker wbrks, bot
in cases that should now be legal and in cases that should be syntactically legal
but semantically illegal. (Since the typechecker quits at the fiiat, giou’ll likely
need several illegal test case files to test the different illegasgaYou do not
need to check for lexical or syntactic errors, just semantic errors. The
Sanpl ePr ogr ans directory contains some files that should typecheck after you
make your changes; some of the files should typecheck successfully with the
initial version of the MiniJava compiler.

You can use thet ypecheck -print Synbol Tabl es options to the MiniJava

compiler to just run the typechecking phase and print out the top-level symbol tables tha
it builds. See theest typechecker targetin thevbkef i | e for an example, and

feel free to make your own target(s) to make running the tests you like @ad more
mechanical.

Turn in the following:

1. Your new and/or modifiedST/ *. j ava andSynbol Tabl e/ *. j ava files.
Clearly identify any modifications to existing files using comments.

2. Your test cases, with names of the farame. | egal . j ava for test cases that
should typecheck successfully amae. i | | egal . j ava for test cases that
should trigger typechecking errors.

3. A transcript of running your typechecker and printing out the resulting symbol
tables on each of your test cases.

Create a single directory by the due date.

