Project 2: The MiniJava Par ser

Due: Wednesday, May 3, 12:30 pm, by turn-in.

In this assignment you will extend the initial MiniJava parser and AST esgsg©n
with the extensions described in tkmurse project description handout

You should extend MiniJava's syntax to allow the following (all of which are legallin f
Java t00):

doubl e is a legal (base) type.

A floating-point literal constant is a legal expression.

An array of a base type, e.gnt[],bool ean[][][], and in general

t ype[] wheret ype is an arbitrary base type, is a legal (base) type. (Base types
are ints, booleans, doubles, and arrays of base types. Only class types are not base
types; this restriction is included only because otherwise the langueg®ade

too hard to parse! The AST and the rest of the compiler should not depend on this
restriction against arrays of class types, however.)

A one-level array allocation expression, eng@w i nt [10] , new

bool ean[20][][], and in generalew t ype[expr] di ms wheret ype is

an arbitrary non-array base tygepr is an arbitrary expression, addns is a
possibly-empty sequence [of 's, is a legal expression.

An array dereference, e.@fi],b[i][]j][k], andin general

expr 1[expr 2] whereexpr 1 is an arbitrary atomic expression axpr 2 is

an arbitrary expression, is a legal expression. An array dereferenae legallson

the left-hand side of an assignment statement. (Atomic expressions exclade una
and binary operator expressions and array allocation expressions.)

An array length expression, e.g.,| engt h and in generagxpr . | engt h
whereexpr is an arbitrary atomic expression, is a legal expreskmmgt h is a
reserved word in MiniJava (unlike Java).

An or expression (using thdg infix operator) is a legal expression.

i f statements do not requieé se clauses.

For loops of the restricted forfror (i = exprl1; expr2; i = expr3)

st nt are allowed, wherexpr 1, expr 2, andexpr 3 are arbitrary expressions,

i is an arbitrary variable (but which has to be the same variable in both the
initialization and increment clauses, atdt is an arbitrary statement.

br eak statements are allowed. (You do not need to check in the syntax that
break statements only appear inside of loops; semantic checking will enforce
this.)

A class variable declaration may be preceded bgtla i ¢ reserved word to
declare a static class variable.

You should follow the precedence and associativity rules of regular Javader the
extensions. It's OK to use CUPsedecence declarations to achieve this.

It's OK to have one shift/reduce conflict in your CUP grammar, for the "dangllse”
problem. Add the-"expect 1" option before then ni j ava. cup argument in the
Makef i | e to buildPar ser/ par ser. j ava if you decide to accept this shift/reduce
conflict. (FYI, in making my sample solution, | couldn't find a way to revise the CUP
grammar specification to avoid this conflict.)

You should add new AST classes and/or modify existing AST classes so that you can
represent the new MiniJava constructs. You should define the appro&itei ng
operations on these classes so that they can be pretty-printed in a form that is
syntactically legal and produces the same AST if it is parsed again. Themthations
required of AST nodes, e.g. typechecking, evaluating, and lowering, you should
implement by throwindJni npl enent edEr r or exceptions.

You only need to get the parser to work (and keep the extended scanner working). You
do not need to do anything to enforce typechecking rules or other semanticsanalysi
constraints on the input program.

Do the following:

1. Extendthis specificatiorof MiniJava's syntactic structure to describe the
extended language, in the same style. (You can assume precedence and
associativity is specified separately, and it is OK to define a granauiais
ambiguous with respect to the "dangling else" problem.)

2. Add and/or modify classes in the AST subdirectory to represent the extended
language.

3. ExtendPar ser/ m ni j ava. cup to parse the extended language and construct
the abstract syntax tree representing the parsed program.

4. Develop test cases that demonstrate that your extended parser and AST classe
work, both in cases that should now be syntactically legal and in cases that should
still be syntactically illegal. (Since the parser quits at the firsteyou'll likely
need several illegal test case files to test the different illegasgaYou do not
need to check for lexical errors, just syntactic errors.Sarepl ePr ogr ans
directory contains some files that should parse after you make your changes; s
of the files should parse successfully with the initial version of the MiniJava
compiler.

You can use thepar se - pri nt AST options to the MiniJava compiler to just run the
parsing phase and print out the AST that it builds. Seedbé par ser target in the

Makef i | e for an example, and feel free to make your own target(s) to make running the
tests you like easier and more mechanical.

Turn in the following:

=

Your extended MiniJava syntax specification.

2. Your modifiedm ni j ava. cup file. Clearly identify your changes using
comments.

3. Your new and/or modifiedST/ *. | ava files. Clearly identify any
modifications using comments.

4. Your test cases, with names of the farame. | egal . j ava for test cases that
should parse successfully amdne. i | | egal . j ava for test cases that should
trigger syntax errors.

5. A transcript of running your parser and printing out the resulting AST on each of

your test cases (at least).

Create a single directory containing these files, and submit thenoeieatly by the due
date.

