
1

1

CSE401: Storage Layout

Larry Ruzzo
Spring 2004

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2004

2

Run-time storage layout:
focus on compilation, not interpretation
n Plan how and where to keep data at run-time
n Representation of

n int, bool, etc.
n arrays, records, etc.
n procedures

n Placement of
n global variables
n local variables
n parameters
n results

3

Data layout of scalars
Based on machine representation

Use hardware representation
(2, 4, or 8 bytes, maybe two words if
segmented machine)

Pointer

1-2 bytes or wordChar

1 byte or wordBool

Use hardware representation
(2, 4, and/or 8 bytes of memory, maybe
aligned)

Integer

4

Data layout of aggregates
n Aggregate scalars together
n Different compilers make different decisions
n Decisions are sometimes machine dependent

n Note that through the discussion of the front-end,
we never mentioned the target machine

n We didn’t in interpretation, either
n But now it’s going to start to come up constantly
n Necessarily, some of what we will say will be

"typical", not universal.

5

Layout of records
n Concatenate layout

of fields
n Respect alignment

restrictions
n Respect field order, if

required by language
n Why might a

language choose to
do this or not do this?

n Respect contiguity?

r : record
 b : bool;
 i : int;
 m : record
 b : bool;
 c : char;
 end
 j : int;
end;

6

Layout of arrays
n Repeated layout of

element type
n Respect alignment of

element type
n How is the length of

the array handled?

s : array [5] of
 record;
 i : int;
 c : char;
 end;

2

7

Layout of multi-dimensional
arrays
n Recursively apply

layout rule to
subarray first

n This leads to row-
major layout

n Alternative: column-
major layout
n Most famous

example: FORTRAN

a : array [3] of
 array [2] of
 record;
 i : int;
 c : char;
 end;

a[1][1]
a[1][2]
a[2][1]
a[2][2]
a[3][1]
a[3][2]

8

Implications of Array Layout
n Which is better if row-major? col-major?

a:array [1000, 2000] of int;

for i:= 1 to 1000 do

 for j:= 1 to 2000 do

 a[i,j] := 0 ;

for j:= 1 to 2000 do

 for i:= 1 to 1000 do

 a[i,j] := 0 ;

9

String representation
n A string ≈ an array of characters

n So, can use array layout rule for strings
n Pascal, C strings: statically determined length

n Layout like array with statically determined length
n Other languages: strings have dynamically

determined length
n Layout like array with dynamically determined

length (below)
n Alternative: special end-of-string char (e.g., \0)

10

Storage allocation strategies
n Given layout of data structure, where in

memory to allocate space for each instance?
n Key issue: what is the lifetime (dynamic

extent) of a variable/data structure?
n Whole execution of program (e.g., global

variables)
⇒ Static allocation

n Execution of a procedure activation (e.g., locals)
⇒ Stack allocation

n Variable (dynamically allocated data)
⇒ Heap allocation

11

Parts of run-time memory
n Code/Read-only data area

n Shared across processes
running same program

n Static data area
n Can start out initialized or

zeroed
n Heap

n Can expand upwards through
(e.g. sbrk) system call

n Stack
n Expands/contracts downwards

automaticallycode/RO data

static data

heap

stack

12

Static allocation
n Statically allocate variables/data structures

with global lifetime
n Machine code
n Compile-time constant scalars, strings, arrays, etc.
n Global variables
n static locals in C, all variables in FORTRAN

n Compiler uses symbolic addresses
n Linker assigns exact address, patches

compiled code

3

13

Stack allocation
n Stack-allocate variables/data structures with

LIFO lifetime
n Data doesn’t outlive previously allocated data on

the same stack
n Stack-allocate procedure activation records

n A stack-allocated activation record = a stack frame
n Frame includes formals, locals, temps
n And housekeeping: static link, dynamic link, …

n Fast to allocate and deallocate storage
n Good memory locality; Supports recursion

14

Stack allocation II
n What about

variables local to
nested scopes
within one
procedure?

procedure P() {

int x;

for(int i=0; i<10; i++){

double x;

…

}

for(int j=0; j<10; j++){

double y;

…

}

}

15

Stack allocation: constraints I
n No references to

stack-allocated
data allowed after
returns

n May be violated if
pointers to locals
are allowed

proc foo (x:int): *int;
 var y:int;
begin
 y := x * 2;
 return &y;
end foo;

var w,z:*int;

z := foo(3);
w := foo(4);

output := *z;
output := *w;

16

Stack allocation: constraints II
n Also violated

by general
first-class
functions

proc foo(x:int): proctype(int):int;
 proc bar(y:int):int;
 begin
 return x + y;
 end bar;
begin
 return bar;
end foo;

var f:proctype(int):int;
var g:proctype(int):int;

f := foo(3); g := foo(4);
output := f(5); output := g(6);

17

Heap allocation
n For data with unknown lifetime

n new/malloc to allocate space
n delete/free/garbage collection to deallocate

n Heap-allocate activation records of first-class
functions

n Relatively expensive to manage
n Can have dangling reference, storage leaks

n Garbage collection reduces (but may not eliminate)
these classes of errors

18

Stack frame layout
n Need space for

n Formals
n Locals
n Various housekeeping data

n Dynamic link (pointer to caller's stack frame)
n Static link (pointer to lexically enclosing stack frame)
n Return address, saved registers, …

n Dedicate registers to support stack access
n FP - frame pointer: ptr to start of stack frame (fixed)
n SP - stack pointer: ptr to end of stack (can move)

4

19

Key property
n All data in stack frame is at a fixed, statically

computed offset from the FP
n This makes it easy to generate fast code to

access the data in the stack frame
n And even lexically enclosing stack frames

n Can compute these offsets solely from the
symbol tables
n Based also on the chosen layout approach

20

...
ca

lle
r's

 fr
am

e.
..

fo
rm

al
 N

fo
rm

al
 N

-1

... fo
rm

al
 1

st
at

ic
lin

k
re

tu
rn

 a
dd

re
ss

dy
na

m
ic

lin
k

sa
ve

d
re

gi
st

er
s

lo
ca

l N
lo

ca
l N

-1

... lo
ca

l 1
ar

g
N

ar
g

N-
1

... ar
g

1
ca

lle
e'

s
st

at
ic

lin
k

FP SP

st
ac

k
gr

ow
s

do
wnhi
gh

ad
dr

es
se

s

lo
w

ad
dr

es
se

s

one stack frame

Stack Layout

21

Accessing locals
n If a local is in the same stack frame then

t := *(fp + local_offset)

n If in lexically-enclosing stack frame
t := *(fp + static_link_offset)
t := *(t + local_offset)

n If farther away
t := *(fp + static_link_offset)
t := *(t + static_link_offset)
…
t := *(t + local_offset)

22

At compile-time…
n …need to calculate

n Difference in nesting depth of use and
definition

n Offset of local in defining stack frame
n Offsets of static links in intervening frames

23

Calling conventions
n Define responsibilities of caller and callee

n To make sure the stack frame is properly set up
and torn down

n Some things can only be done by the caller
n Other things can only be done by the callee
n Some can be done by either
n So, we need a protocol

24

PL/0 calling sequence
n Caller

n Evaluate actual args
n Order?

n Push onto stack
n Order?
n Alternative: First k

args in registers
n Push callee's static link

n Or in register?
Before or after stack
arguments?

n Execute call instruction
n Hardware puts return

address in a register

n Callee
n Save return address on stack
n Save caller’s frame pointer

(dynamic link) on stack
n Save any other registers that

might be needed by caller
n Allocates space for locals,

other data
sp := sp – size_of_locals
 – other_data

n Locals stored in what order?
n Set up new frame pointer

(fp := sp)
n Start executing callee’s code

5

25

PL/0 return sequence
n Callee

n Deallocate space for local,
other data
sp := sp + size_of_locals
 + other_data

n Restore caller’s frame
pointer, return address &
other regs, all without
losing addresses of stuff
still needed in stack

n Execute return instruction

n Caller
n Deallocate space

for callee’s static
link, args

n sp := fp

n Continue execution
in caller after call

26

Accessing callee procedures
similar to accessing locals
n Call to procedure declared in same scope:

static_link := fp
call p

n Call to procedure in lexically-enclosing scope:
static_link := *(fp + static_link_offset)
call p

n If farther away
t := *(fp + static_link_offset)
t := *(t + static_link_offset)
…
static_link := *(t + static_link_offset)
call p

27

Some questions
n Return values?
n Local, variable-sized, arrays

proc P(int n) {

 var x array[1 .. n] of int;

 var y array[-5 .. 2*n] of array[1 .. n] int;

…

}

n Max length of dynamic-link chain?
n Max length of static-link chain?

28

Dynamically sized arrays
n Arrays whose length is

determined at run-time
n Different values of the same

array type can have different
lengths

n Can store length implicitly
in array
n Where? How much space?

n Dynamically sized arrays
require pointer indirection
n Each variable must have

fixed, statically known size

a : array of

 record;
 i : int;
 c : char;
 end;

29

Dope vectors
n PL/1 handled arrays differently, in particular

storage of the length
n It used something called a dope vector, which

was a record consisting of
n A pointer to the array
n The length of the array
n Subscript bounds for each dimension

n Arrays could change locations in memory and
size quite easily

30

Exercise: apply to this example
module M;
 var x:int;
 proc P(y:int);
 proc Q(y:int);

 var qx:int;
 begin R(x+y);end Q;
 proc R(z:int);

 var rx,ry:int;
 begin P(x+y+z);end R;
 begin Q(x+y); R(42); P(0); end P;
begin
 x := 1;
 P(2);
end M.

6

32

static link
return address
dynamic link
saved registers

y static link
return address

saved registers

y

qx

dynamic link

static link
return address

saved registers

z

ry

dynamic link

rx

static link
return address

saved registers

x

dynamic link

M x int 0
P proc
sl
dl

Q y int
qx int
sl
dl

P

R z int
rx int
ry int
sl
dl

y int
Q proc
R proc
sl
dl

P

Exercise: stack frames

33

What do these mean?
proc P(int a);
begin

 i := i + 5;
 output := a;
 output := a+1;
 a := a+1;
 output := a;
end;

int i=2;
P(i); output i;
P(2); output 2;

proc Q(int a,int b);
 int c;
begin
 c := a;
 a := b;
 b := c;
end;

int i=2; j=3;

Q(i,j);

34

Parameter passing
n When passing args, need to support right semantics
n Issue #1: when is argument expression evaluated?

n Before call?
n When first used by callee?
n At every use by callee?

n Issue #2: what happens if callee assigns to formal?
n Is this visible to the caller? If so, when?
n What happens with aliasing among arguments and lexically

visible variables?
n Different choices lead to

n Different representations for passed arguments and
n Different code to access formals

35

Parameter passing modes
n call-by-value
n call-by-reference
n call-by-value-result
n call-by-name
n call-by-need
n …

36

Call-by-value
n Assignment to

formal doesn’t
affect caller’s
value

n Implementation:
pass copy of
argument value
n Trivial for scalars
n Inefficient for

aggregates(?)

var a : int;
proc foo(x:int,y:int);
begin
 x := x + 1;
 y := y + a;
end foo;

a := 2;
foo(a,a);
output := a;

37

Call-by-reference
n Assignment to formal

changes actual value
in caller
n Immediately
n Actual must be lvalue

n Implementation: pass
pointer to actual
n Efficient for big data

structures(?)
n References to formal

must do extra
dereference

var a : int;
proc foo(x:int,y:int);
begin
 x := x + 1;
 y := y + a;
end foo;

a := 2;
foo(a,a);
output := a;

7

38

Big immutable data
for example, a constant string

n Suppose language has call-by-value
semantics

n But, it's expensive to pass by-value
n Could implement as call-by-reference

n Since you can’t assign to the data, you
don’t care

n Let the compiler decide?

39

Call-by-value-result
n Assignment to formal

copies final value back
to caller on return
n “copy-in, copy-out”

n Implement as call-by-
value with copy back
when procedure returns
n More efficient than call-

by-reference
n For scalars?
n For arrays?

var a : int;
proc
foo(x:int,y:int);
begin
 x := x + 1;
 y := y + a;
end foo;

a := 2;
foo(a,a);
output := a;

40

Call-by-result
var a : int;
proc foo(x:int,y:int);
begin
 x := x + 1;
 y := y + a;
end foo;

a := 2;
foo(a,a);
output := a;

41

Ada: in, out, in out

n Programmer selects intent
n Compiler decides which mechanism is

more efficient
n Program’s meaning “shouldn’t” depend

on which is chosen

42

Call-by-name, call-by-need
n Variations on lazy evaluation

n Only evaluate argument expression if and when
needed by callee

n Supports very cool programming tricks
n Somewhat hard to implement efficiently in

traditional compilers
n Thunks

n Largely incompatible with side-effects
n So more common in purely functional languages

like Haskell and Miranda
n But did appear first in Algol-60

43

Call-by-name
n Replace each use of a

parameter in the callee, by
the text of the actual
parameter, but in the
caller's context

n This implies reevaluation of
the actual every time the
formal parameter is used

n And evaluation of the actual
might return different values
each time

proc square(x);
int x;
begin
 x := x * x
end;

square(A[i]);

8

44

Jensen’s device
n How to implement the

equivalent of a math
formula like Σ0≤i ≤n A2i

sum(i,0,n,A[2*i])?

ν Pass by-reference or
by-value do not work,
since they can only
pass one element of A

ν So: Jensen’s device

int proc sum(j,lo,hi,Aj);
 int j, lo, hi, Aj, s;
begin
 s := 0;
 for j := lo to hi do
 s := s + Aj;
 end;
 return s;

end;

45

A classic problem:
a procedure to swap two elements
proc swap(int a,int b);
 int temp;
begin
 temp := a;
 a := b;
 b := temp;
end;

n int x, y;

 x = 2;

 y = 5;

 swap(x, y);

n int j, z[10];

j = 2;

 z[2] = 5;

 swap(j, z[j]);

46

Call-by-name advantages
n Textual substitution is a simple, clear

semantic model
n There are some useful applications, like

Jensen's device
n Argument expressions are evaluated

lazily

47

Call-by-name disadvantages
n Repeatedly evaluating arguments can

be inefficient
n Pass-by-name precludes some standard

procedures from being implemented
n Pass-by-name is difficult to implement

48

thunks
n Call-by-name arguments are compiled to

thunks, special parameter-less procedures
n One gives value of actual, appropriately evaluated

in caller’s environment
n Other gives l-value, again in caller's environment

n Thunks are passed into the called procedure
and called to evaluate the argument
whenever necessary

49

Parameters and compiling
n There is an intimate link between the

semantics of a programming language and
the mechanisms used for parameter passing

n Maybe more than other programming
language constructs, the connection is
extremely strong between implementation
and language semantics in this area

9

50

PL/0 storage allocation
n How and when it is decided how big a stack frame

will be?
n It’s necessary that the frame always be the same size for

every invocation of a given procedure
n Also, how and when is it decided exactly where in a

stack frame specific data will be?
n Some pieces are decided a priori (such as the return

address)
n Others must be decided during compile-time, such as local

variables (since the number and size can’t be known
beforehand)

n This is all done during the storage allocation phase

51

PL/0 storage allocation
void SymTabScope::allocateSpace() {
 _localsSize = 0;
 _formalsSize = 0;

 for (int i = 0; i < _symbols->length(); i++)
{
 _symbols->fetch(i)->allocateSpace(this);
 }

 for (int j = 0; j < _children->length(); j++)
{

_children->fetch(j)->allocateSpace();
 }
}

52

int SymTabScope::allocateFormal(int size) {
 int offset = _formalsSize;
 _formalsSize += size;
 return offset;
}
int SymTabScope::allocateLocal(int size) {
 int offset = _localsSize;
 _localsSize += size;
 return offset;
}

void VarSTE::allocateSpace(SymTabScope* s) {
 int size = _type->size();
 _offset = s->allocateLocal(size);
}
void FormalSTE::allocateSpace(SymTabScope* s) {
 int size = _type->size();
 _offset = s->allocateFormal(size);
}

