3 CSE401: Storage Layout

Larry Ruzzo
Spring 2004

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2004

Run-time storage layout:
focus on compilation, not interpretation

= Plan how and where to keep data at run-time
= Representation of

= int, bool, etc.

= arrays, records, etc.

= procedures
= Placement of

= global variables

= local variables

= parameters

= results

Data layout of scalars
i Based on machine representation

Integer Use hardware representation
(2, 4, and/or 8 bytes of memory, maybe
aligned)

Bool 1 byte or word

Char 1-2 bytes or word

Pointer Use hardware representation
(2, 4, or 8 bytes, maybe two words if
segmented machine)

i Data layout of aggregates

= Aggregate scalars together

= Different compilers make different decisions

= Decisions are sometimes machine dependent
Note that through the discussion of the front-end,
we never mentioned the target machine

We didn't in interpretation, either

But now it’s going to start to come up constantly

Necessarily, some of what we will say will be
"typical", not universal.

i Layout of records

= Concatenate layout |r @ record

1 b : bool;
of fields 2o
= Respect alignment m : record
restrictions b : bool;
[e] char;

= Respect field order, if end
required by language j o oint;
= Why might a end;
language choose to
do this or not do this?

= Respect contiguity?

i Layout of arrays

= Repeated layout of | : ey [5] of
element type e

i : int;
= Respect alignment of ¢ : char;
element type end;

= How is the length of
the array handled?

Layout of multi-dimensional
arrays

= Recursively apply R S P
layout rule to record;
subarray first S

= This leads to row- end;
major layout

= Alternative: column- a[1][1]
major layout a[;][fl
= Most famous :{2}{2}

example: FORTRAN a[3][1]
a[3][2]

i Implications of Array Layout

= Which is better if row-major? col-major?

ararray [1000, 2000] of int;

for i:= 1 to 1000 do
for j:= 1 to 2000 do
ali,j] = 0 ;

for j:= 1 to 2000 do
for i:= 1 to 1000 do

i String representation

= A string = an array of characters
= So, can use array layout rule for strings

= Pascal, C strings: statically determined length
= Layout like array with statically determined length

= Other languages: strings have dynamically
determined length

= Layout like array with dynamically determined
length (below)
= Alternative: special end-of-string char (e.g., \0)

Storage allocation strategies

= Given layout of data structure, where in
memory to allocate space for each instance?

= Key issue: what is the lifetime (dynamic
extent) of a variable/data structure?

= Whole execution of program (e.g., global
variables)

- Static allocation

= Execution of a procedure activation (e.g., locals)
- Stack allocation

= Variable (dynamically allocated data)
- Heap allocation

i Parts of run-time memory

= Code/Read-only data area

stack = Shared across processes
running same program
+ = Static data area
= Can start out initialized or
zeroed
4 = Heap
heap

= Can expand upwards through
(e.g. sbrk) system call

static data = Stack
= Expands/contracts downwards

automatically

code/RO data

Static allocation

= Statically allocate variables/data structures
with global lifetime
= Machine code
= Compile-time constant scalars, strings, arrays, etc.
= Global variables
= static locals in C, all variables in FORTRAN
= Compiler uses symbolic addresses
= Linker assigns exact address, patches
compiled code

Stack allocation

= Stack-allocate variables/data structures with
LIFQO lifetime

= Data doesn’t outlive previously allocated data on
the same stack

= Stack-allocate procedure activation records
= A stack-allocated activation record = a stack frame
= Frame includes formals, locals, temps
= And housekeeping: static link, dynamic link, ...

= Fast to allocate and deallocate storage

= Good memory locality; Supports recursion

Stack allocation I

= What about procedure P() |
variables local to e .
nested scopes for(int i=0; i<10; i++){
double x;
within one
procedure? }

for (int j=0; j<10; Jj++){
double y;

Stack allocation: constraints |

= No references to proc foo (x:int): *int;
var y:int;
stack-allocated begin
data allowed after v oi=x % 2;
returns return &y;
. . end foo;
= May be violated if
pointers to locals var w,z:*int;
are allowed 2 i fo0(3);
w := foo(4);
output := *z;
output := *w;

Stack allocation: constraints Il

AISO ViOlated proc foo(x:int): proctype (int) :int;

proc bar(y:int) :int;

by general begin
first-class return x + y;
i end bar;
functions begin
return bar;
end foo;

var f:proctype (int) :int;
var g:proctype (int) :int;

f := foo(3); g := foo(4);
output := £(5); output := g(6);

Heap allocation

= For data with unknown lifetime
= new/malloc to allocate space
= delete/free/garbage collection to deallocate
= Heap-allocate activation records of first-class
functions
= Relatively expensive to manage
= Can have dangling reference, storage leaks

= Garbage collection reduces (but may not eliminate)
these classes of errors

Stack frame layout

= Need space for
= Formals
= Locals
= Various housekeeping data
= Dynamic link (pointer to caller's stack frame)
= Static link (pointer to lexically enclosing stack frame)
= Return address, saved registers, ...
= Dedicate registers to support stack access
= FP - frame pointer: ptr to start of stack frame (fixed)
= SP - stack pointer: ptr to end of stack (can move)

Key property

= All data in stack frame is at a fixed, statically
computed offset from the FP
= This makes it easy to generate fast code to
access the data in the stack frame
= And even lexically enclosing stack frames
= Can compute these offsets solely from the
symbol tables
= Based also on the chosen layout approach

Stack Layout

@
3 ®
<8 x%c 23
o¢ §68—— 235
£ 8
3 n DT (-%
3

|

formal N-1
formal 1
static link
return address
dynamic link
local N
local N-1

local 1
argN
arg N-1

FP—
4
SP ’/
\ arg 1

...caller's frame...
formal N
saved registers
callee's static link

Bwel} 3oejs sauo

Accessing locals

= If a local is in the same stack frame then

t := *(fp + local offset)
= If in lexically-enclosing stack frame
t := *(fp + static_link offset)
t := *(t + local offset)
= If farther away
t := *(fp + static_link offset)
t := *(t + static_link offset)
t := *(t + local offset)

21

At compile-time...

= ...need to calculate
= Difference in nesting depth of use and
definition
= Offset of local in defining stack frame
= Offsets of static links in intervening frames

Calling conventions

= Define responsibilities of caller and callee

= To make sure the stack frame is properly set up
and torn down

= Some things can only be done by the caller
= Other things can only be done by the callee
= Some can be done by either

= So, we need a protocol

23

PL/0 calling sequence

= Caller = Callee
= Evaluate actual args = Save return address on stack
= Order? = Save caller’s frame pointer
= Push onto stack (dynamic link) on stack
= Order? = Save any other registers that
= Alternative: First k might be needed by caller
args in registers = Allocates space for locals,
= Push callee's static link other data
= Orin register? sp := sp - size_of_locals
Before or after stack - other_data
arguments? = Locals stored in what order?

= Execute call instruction Set up new frame pointer
= Hardware puts return (fp := sp)
address in a register Start executing callee’s code

24

PL/0 return sequence

= Callee = Caller

= Deallocate space for local, . Deallocate space

other data for callee’s static
sp := sp + size_of_locals "
+ other data link, args

= Restore caller’s frame = sp := fp
pointer, return address & = Continue execution
other regs, all without in caller after call

losing addresses of stuff
still needed in stack

= Execute return instruction

25

Accessing callee procedures
similar to accessing locals

= Call to procedure declared in same scope:

static_link := fp
call p

= Call to procedure in lexically-enclosing scope:
static_link := *(fp + static_link offset)
call p

= If farther away

t := *(fp + static_link offset)

t := *(t + static_link offset)
static_link := *(t + static_link offset)
call p

i Some questions

= Return values?
= Local, variable-sized, arrays

proc P(int n) {
var x array[l .. n] of int;

var y array[-5 .. 2*n] of array[l .. n] int;

}
= Max length of dynamic-link chain?
= Max length of static-link chain?

27

Dynamically sized arrays

= Arrays whose length is a : array of
determined at run-time record;
= Different values of the same i : int;
array type can have different c : char;
lengths end;
= Can store length implicitly
in array

= Where? How much space?
= Dynamically sized arrays
require pointer indirection

= Each variable must have
fixed, statically known size

Dope vectors

= PL/1 handled arrays differently, in particular
storage of the length
= It used something called a dope vector, which
was a record consisting of
= A pointer to the array
= The length of the array
= Subscript bounds for each dimension
= Arrays could change locations in memory and
size quite easily

29

i Exercise: apply to this example

module M;
var x:int;
proc P(y:int);
proc Q(y:int);
var gx:int;
begin R(x+y);end Q;
proc R(z:int);
var rx,ry:int;
begin P(x+y+z);end R;
begin Q(x+y); R(42); P(0); end P;
begin
x = 1;
P(2);
end M. 20

Exercise: stack frames

x_[int [O [Py [Jint y Jint z Jint
P |proc Q [prog gx_|int rx_lint
sl R [prog sl ry [int
dl sl dl sl

dl dl

z
y static link

static link y static link return address
return address static link return address dynamic link
dynamic link return address dynamic link saved registers
saved registers dynamic link saved registers

saved registers v
X ax X

32

What do these mean?

proc P(int a); proc Q(int a,int b);
begin int c;
i =1+ 5; begin
output := a; c = a
output := a+l; a = b;
a 1= a+l; b = c;
output := a; end;
end;
int i=2: int i=2; j=3;
P(i); output i; Q1,307
P(2); output 2;

33

Parameter passing

= When passing args, need to support right semantics
= Issue #1: when is argument expression evaluated?
= Before call?
= When first used by callee?
= At every use by callee?
= Issue #2: what happens if callee assigns to formal?
= s this visible to the caller? If so, when?

= What happens with aliasing among arguments and lexically
visible variables?

= Different choices lead to
= Different representations for passed arguments and
= Different code to access formals

34

Parameter passing modes

= call-by-value

= call-by-reference

= call-by-value-result
= call-by-name

= call-by-need

35

Call-by-value

= Assignment to var a : int;
formal doesn’t proc foo(x:int,y:int);
affect caller’s begin
value X 1= x + 1;
= Implementation: yoim oyt a
end foo;
pass copy of
argument value @ i= 2

= Trivial for scalars | £ (a, a)
= Inefficient for output
aggregates(?)

36

Call-by-reference

= Assignment to formal |[var a : int;
changes actual value |proc foo (x:int,y:int);

in caller begin
= Immediately x = x + 1;
= Actual must be Ivalue y ==y t a;

= Implementation: pass |end foo;
pointer to actual

. Efficient for big data |2 = 27
structures(?) foo(a,a);
= References to formal |output :=
must do extra
dereference

ay

37

Big immutable data

i for example, a constant string

= Suppose language has call-by-value
semantics

= But, it's expensive to pass by-value

= Could implement as call-by-reference

= Since you can't assign to the data, you
don'’t care

= Let the compiler decide?

38

i Call-by-value-result

= Assignment to formal var a : int;
copies final value back |proc .
to caller on return foo (x:int,y:int);

. N begin
= “copy-in, copy-out X 1= x + 1;
= Implement as call-by- y 1=y + a;

value with copy back |end foo;
when procedure returns
= More efficient than call- | 55 (a, a)
by-reference output :

= For scalars?

= For arrays?

39

i Call-by-result

var a : int;

proc foo(x:int,y:int);

begin
X 3

=X

+ 1;
y : + a;
end foo;

a = 2;
foo(a,a);

output := a;

40

i Ada: in, out, in out

= Programmer selects intent

= Compiler decides which mechanism is
more efficient

= Program’s meaning “shouldn’t” depend
on which is chosen

41

i Call-by-name, call-by-need

= Variations on lazy evaluation

= Only evaluate argument expression if and when
needed by callee

= Supports very cool programming tricks

= Somewhat hard to implement efficiently in
traditional compilers
= Thunks

= Largely incompatible with side-effects

= So more common in purely functional languages
like Haskell and Miranda
= But did appear first in Algol-60

42

i Call-by-name

= Replace each use of a proc square (x);
parameter in the callee, by int x;
the text of the actual beill e
parameter, but in the end;
caller's context
= This implies reevaluation of |square (a[1]);
the actual every time the
formal parameter is used

= And evaluation of the actual
might return different values
each time

43

i Jensen’s device

= How to implement the | int proc sum(j,lo,hi,A3);
equivalent of a math int 3, lo, hi, A3, s;

formula like Xo ., Ay | °°9*"_
for j := lo to hi do
sum(i,0,n,A[2%1])? s := s + Aj;
end;
v Pass by-reference or return s;

by-value do not work, |end;
since they can only

pass one element of A
v So: Jensen’s device

44

A classic problem:

i a procedure to swap two elements

proc swap (int a,int b); = int x, y;
int temp; x = 2;
begin y = 5;
temp := a
a := b; swap (x, y)
b := temp;
end; s int j, z[10];
j = 2;
z[2] = 5
swap (3, z[j])

45

i Call-by-name advantages

= Textual substitution is a simple, clear
semantic model

= There are some useful applications, like
Jensen's device

= Argument expressions are evaluated
lazily

46

i Call-by-name disadvantages

= Repeatedly evaluating arguments can
be inefficient

= Pass-by-name precludes some standard
procedures from being implemented

= Pass-by-name is difficult to implement

47

i thunks

= Call-by-name arguments are compiled to
thunks, special parameter-less procedures

= One gives value of actual, appropriately evaluated
in caller’s environment

= Other gives I-value, again in caller's environment
= Thunks are passed into the called procedure
and called to evaluate the argument
whenever necessary

48

i Parameters and compiling

= There is an intimate link between the
semantics of a programming language and
the mechanisms used for parameter passing

= Maybe more than other programming
language constructs, the connection is
extremely strong between implementation
and language semantics in this area

49

PL/O storage allocation

= How and when it is decided how big a stack frame
will be?
= It’s necessary that the frame always be the same size for
every invocation of a given procedure
= Also, how and when is it decided exactly where in a
stack frame specific data will be?
= Some pieces are decided a priori (such as the return
address)

Others must be decided during compile-time, such as local
variables (since the number and size can’t be known
beforehand)

This is all done during the storage allocation phase

50

PL/O storage allocation

void SymTabScope::allocateSpace () {

_localsSize = 0;
_formalsSize = 0;
for (int i = 0; i < _symbols->length(); i++)

_symbols->fetch(i)->allocateSpace (this);
}

for (int j = 0; j < _children->length(); j++

_children->fetch(j)->allocateSpace();
}

int SymTabScope::allocateFormal (int size) {
int offset = _formalsSize;
_formalsSize += size;
return offset;

int SymTabScope::allocateLocal (int size) {
int offset = _localsSize;
_localsSize += size;
return offset;

}

void VarSTE::allocateSpace (SymTabScope* s) {
int size = _type->size();
_offset = s->allocatelocal (size);

}

void FormalSTE::allocateSpace (SymTabScope* s) {
int size = _type->size();
_offset = s->allocateFormal (size);

