CSE401: Semantic Analysis

Larry Ruzzo
Spring 2004

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2004

Prototype compiler structure

Lexical analysis Code generation
Atactic analysis Optimization

g it Intermediate code
Semantic|analysis generation

torage
layout 2

Semantic analysis

= Perform final legality checking of input program
+ Properties not checked by lexical or syntactic checking
— Ex: type checking, ensuring break statement is in a loop, etc.
= “Understand” program well enough to do the
back-end synthesis activities
+ Ex: relate particular names to particular declarations

Symbol tables

= Key Compiler data structure
+ Produced (and used) during semantic analysis
+ Used during code generation

= Stores info about names used in program
+ Declarations add entries to the symbol table

+ Uses of names look up appropriate symbol
table entry

= Optionally passed to runtime for debugger

What information about names?

= Kind of declaration
e var, const, proc, etc.
= Type
= For const: keep value
= For var: Where allocated in memory?
+ Static, stack, heap? Offset?
+ Not computed initially, but later on
= For formal parameter: passed by-value, by-ref...

5

Example: a PL/0 DeclList

var x : int;

var g : array[20] of bool;

procedure foo(a : int); begin .. end foo;
const z : int = 10;

PL/0 symbol table entries

class SymTabEntry ({
public:
char* name () ;
Type* type();

virtual bool isConstant();
virtual bool isVariable();
virtual bool isFormal();

virtual bool isProcedure();

virtual int value(); // const only
virtual int offset (SymTabScope* s); // var only

SymTab subclasses

More soon 7

class VarSTE : public SymTabEntry { .. };
class FormalSTE : public VarSTE { .. };

class ConstSTE : public SymTabEntry { .. };
class ProcSTE : public SymTabEntry { .. };

Nested scopes: Example

procedure foo(x:int, w:int);
var z:bool;
const y:bool = true;
procedure bar(x:array[5] of bool);
var y:int;
begin
x[y]l := z;
end bar;
begin
while z do
var z:int, y:int;
y =z * x;
end;
output := x + y;
end foo;

Nested scopes: How to handle?

= What happens when the same name is
declared in different scopes?

= This is first a question of language design:
what is the defined semantics?

= Two standard choices

» Lexical (static) scoping: use the block structure
of the program

» Do you remember choice #2 from 3417

Nested Scopes: Lexical/static

= The syntactic (block) structure of the
program determines how names are
resolved
= Given a name in a block
+ The nearest enclosing block with a declaration
for that name is the relevant declaration
* If none, it’s an error

Nested scopes: Dynamic

Lexical scope and symbol tables

= Each scope has its own symbol table

= Logically, for a block-structured program,
there is a tfree of symbol tables
» Root = outermost block

Tree of symbol tables

procedure foo(x:int, w:int); (global)
var z:bool; foo

const y:bool = true;
procedure bar (x:array[5] of bool);

N foo
var y:int;
begin bar, ..
x[y]l := z; Wint
end bar; Xyt
begin o
9 Voot
while z do
var z:int, y:int; Zoool
: A ;
y 1=z * x; end; /
output := x + y; ba; thlle
end foo; array int
Yint Yint

Lexical scope and symbol tables

= But at a given point in the program, only part of
the tree is relevant
+ Current block ==
+ Nearest enclosing block == parent(X)
+ Next nearest == parent(parent(X))
+ Etc., up to root

Nested scope operations

= When encounter a new scope during semantic analysis
- Create a new, empty scope
+ lts parent is the current scope (that of enclosing block)
+ New scope becomes "current"
= When encounter a declaration
+ Add entry to the current scope
+ Check for duplicates in the current scope only (why?)
= When encounter a use
+ Search scopes for declaration: current, its parent, grandparent,...
= When exiting a scope
+ Parent becomes current again

PL/0 symbol table interface

class SymTabScope {
public:
SymTabScope (SymTabScope* enclosingScope) ;

void enter (SymTabEntry* newSymbol) ;

SymtabEntry* lookup (char* name);

SymtabEntry* lookup (char* name,
SymTabScope*& retScope);

Implementing nested scopes

Each scope (instance of symTabscope)
keeps a pointer to its enclosing
SymTabScope (parent)

= Each scope maintains “down links”, too
(_children, so we can walk the whole tree)

Symbol tables: Implementation

= Abstractly, it's simple:
a mapping from names to information, aka
key/value pairs

= Concretely, there are lots of choices, each with
different performance consequences, e.g.
+ Linked list (or dynamic array)
+ Binary search tree
+ Hash table

= So, we'll take a brief trip down CSE326 memory
lane...

Symbol tables: Complexity

Enter Lookup Space cost

A. Linked lists Oo(1)

B. Binary
search tree

C. Hash table

20

Symbol tables: Other issues

= Linked lists must have keys that can be
compared for equality

= Binary search trees must have keys that
can be ordered

= Hash tables must have keys that can be
hashed (well)

= Hash table size?

Symbol tables:
Implementation Summary

= In general
+ Use a hash table for big mappings
» Use a binary tree or linked list for small
mappings
= Ideally, use a self-reorganizing data
structure

22

Types

= Types are abstractions of values that share
common properties
+ What operations can be performed on them
+ (Usually) how they are represented in memory

= Types usually guide how compilation proceeds

Taxonomy of types

= Basic/atomic types
¢ int, bool, char, real, string, ..

e enum(vy, Vy, .., V)
= User-defined types: stack, symTabscope, ..
» Type constructors
» Parameterized types
» Type synonyms

24

Type constructors

Parameterized types

= ptr (type)
= array (index-range, element-type)
= record (namey:type,, ... name,:type,)
= tuple (typey, ..., type,) or type; x ... x type,
= union (typey, ..., type,) or type; + ... + type,
function (arg-types, result-type) or
type, x ... x type, — result-type

Functions returning types

» Array<T>

= Stack<T>

= HashTable<Key, Value>

26

Type synonyms

Type checking

Give alternative name to existing type
= typedef SymTabScope* SymTabReg

= A key part of language implementation
+ Semantic analysis phase, linking, and/or runtime
= Verifies that operations on values will be legal
* l.e., they compute values that will be legal in context

= Examples
3+4 3+4.0
3+X 3+ 'x'
3[x] X[3]
3+ TRUE X.y->z

28

Type checking terminology

Type weaknesses in C/C++

= Static vs. dynamic typing
+ Static: checked prior to execution (e.g., compile-time)
+ Dynamic: checked during execution
= Strong vs. weak typing
+ Strong: guarantees no illegal operations performed
+ Weak: no such guarantee
= Caveats
+ Hybrids are common

+ Mistaken usages of these terms is common
— Ex: “untyped”, “typeless” could mean “dynamic” or “weak”

extern myfunc (doublex); myfunc (int *kp) {
main () { char c='1";
int i=42, j=0, *ip=&i; union{
double x=3.14, y[10]; int 1i;
scanf ("%d %f", &i, &73); double x;
x = (double) i; } huh;
x = (double*) ip;
(*ip) = 1; c = sgrt(c);
(++ip) = 1; huh.x = 42.0;
yii1] = 1; huh.i += 1;
myfunc (&x) ; *kp = huh.ij
} main.c | |} myfunc.c

30

More on C++ type system

stmt* sp;

IfStmt* isp;

isp = new IfStmt(..);

sp = isp; :7—{ upcast — always safe ‘
sp = (Stmt*) isp;

downcast — safe? dynamic
isp = (IfStmt*) sp; — check? (Java would)

sp = (isp -> _then_stmts->fetch(14)) ;

//Better:

if (isp = dynamic_cast<IfStmt*> sp) {
sp = isp -> _then_stmts->fetch(14);

} 31

Fill in with real languages

Statically typed | Dynamically typed

Strong typing

Weak typing

32

Type checking

= Assume we have an AST for the source program
+ It is syntactically correct
+ The symbol table has been computed
= Does it meet the type constraints of the language?
* Exta := 3 * b + fork(c + 3.14159)
— What are the types of a, b, and c?
— What type does fork return?
— What type does fork accept?
— What happens when c is added to a f1oat?
— What happens when b is multiplied by 3?
— What happens when fork’s result is added to 3 * b?
33

Type checking strategy

= Traverse AST recursively, starting at root node
+ Most work is on the bottom-up pass
= At each node
+ Recursively type check any subtrees
+ Check legality of current node, given children's types
+ Compute and return result type (if any) of current node

34

Example: 3 * b + fork(c + 3.14159)

Symtab

b: int
c: float
fork: float — int

35

Top-down information also:
From enclosing context

= Need to know types of variables
referenced
» Must pass down symbol table during traversal
= Legality of (e.g.) break and return
statements depends on context: pass
down
+ whether in loop,
+ what the result type of the function must be,

- etc *

Representing types in PL/0

PL/0 type checking: overview

class Type {
virtual bool same (Type* t);

);m

class IntegerType : public Type {..};
class BooleanType : public Type {..};
class ProcedureType : public Type {

TypeArray* _formalTypes;
bi

IntegerType* integerType; // predefined instances

BooleanType* booleanType;
37

Type* Expr::typecheck (SymTabScope* s);
void Stmt::typecheck (SymTabScope* s);
void Decl::typecheck(SymTabScope* s);

Type* LValue::
typecheck lvalue (SymTabScope* s);

int Expr::resolve constant (SymTabScope* s);

Type* TypeAST::typecheck (SymTabScope* s);

Type checking PL/0 expressions

A simple case: integer literals (like “0” or “-177)

Type* IntegerLiteral::typecheck (SymTabScope* s) {
return integerType;

}

39

38
Type* VarRef::typecheck (SymTabScope* s) {
SymTabEntry* ste = s->lookup(_ident);
if (ste == NULL) {
char* errormsg = new char[errormsgbuffsize];
sprintf (errormsg,
"undeclared var \"%s\" referenced", _ident);
Plzero->typeError (errormsg, line);
if (! ste->isConstant() &&
| ste->isVariable()) {
char* errormsg = new char[errormsgbuffsize];
sprintf (errormsg, "\"%s\" not const or var",_ident);
Plzero->typeError (errormsg, line);
}
return ste->type();
}
40

Type checking operators

Type* BinOp::typecheck (SymTabScope* s) {
Type* left = _left->typecheck(s);
Type* right = _right->typecheck(s);

switch(_op) |
case PLUS:case MINUS:case MUL: case LEQ:
if (left->different (integerType) ||
right->different (integerType)) {
Plzero->typeError ("args not ints");
}

break;

case EQL: case NEQ:
if (left->different (right)) {
Plzero->typeError ("args not same type");
}

break;

default:
Plzero->fatal ("unexpected BINOP");

switch (_op) |
case PLUS:case MINUS:case MUL:case DIVIDE:
return integerType;

case EQL:case NEQ:case LSS:
case LEQ:case GTR:case GEQ:
return booleanType;

default:

Plzero->fatal ("unexpected BINOP");
return NULL; // not actually executed

42

Type checking assignments

void AssignStmt::typecheck (SymTabScope* s) {
Type* lhs = _lvalue->typecheck_lvalue(s);
Type* rhs = _expr->typecheck(s);
if (lhs->different (rhs)) {
Plzero->typeError ("lhs type differs from rhs");
}

43

Type checking if statements

void IfStmt::typecheck (SymTabScope* s) {
Type* testType = _test->typecheck(s);
if (testType->different (booleanType)) {
Plzero->typeError ("test not Boolean");

for (int 1 = 0;
i < _then_stmts->length(); i++) {
_then_stmts->fetch (i) ->typecheck(s);
}

44

Type checking call statements

void Callstmt::typecheck (SymTabScope* s) {

int i;
TypeArray* argTypes = new TypeArray;
for (i = 0; i < _args->length(); i++) {
Type* argType = _args->fetch(i)->typecheck(s);

argTypes->add (argType) ;
}

SymTabEntry* ste = s->lookup(_ident);

if (ste == NULL) {

Plzero->typeError ("undeclared procedure");
}

Type* procType = ste->type();
if (! procType->isProcedure()) {

Plzero->typeError ("not a procedure");

TypeArray* formalTypes = procType->formalTypes () ;
if (formalTypes->length() != argTypes->length()) {

Plzero->typeError ("call doesn't match proto");
}

for (1 = 0; i1 < formalTypes->length(); i++) {
if (formalTypes->fetch(i)->
different (argTypes->fetch(i))) {

Plzero->typeError (..);
}

return; // whew! passed all checks!

46

Type checking declarations

void VarDecl ypecheck (SymTabScope* s) {
for (int 1 = 0; 1 < _items->length(); 1i++) {
_items->fetch(i)->typecheck(s);

void VarDeclItem: :typecheck (SymTabScope* s) {
Type* t = _type->typecheck(s);

VarSTE* varSTE = new VarSTE(_name, t);
s->enter (varSTE, line);

void ConstDecl::typecheck (SymTabScope* s) {
for (int 1 = 0; 1 < _items->length(); i++) {
_items->fetch (i) ->typecheck(s);
}
}

void ConstDeclItem::typecheck (SymTabScope* s) {
Type* t = _type->typecheck(s);
Type* type = _expr->typecheck(s);
Value* constant_value = _expr->resolve_constant(s);
if (t->different (type)) {
Plzero->typeError(..);
}

ConstSTE* constSTE =
new ConstSTE(_name, t, constant_value);
s->enter (constSTE, line);

void ProcDecl::typecheck (SymTabScope* s) {
SymTabScope* body_scope = new SymTabScope (s);

TypeArray* formalTypes = new TypeArray;

for (int i = 0; i < _formals->length(); i++) {
FormalDecl* formal = _formals->fetch(i);
Type* t = formal->typecheck(s, body_scope);
formalTypes->add(t) ;

}

ProcedureType* procType =
new ProcedureType (formalTypes) ;

ProcSTE* procSTE = new ProcSTE (_name, procType);
s->enter (procSTE, line); // add to enclosing scope

_block->typecheck (body_scope); // check in new scope
} 49

void Block::typecheck (SymTabScope* s) {

for (int i = 0; i < _decls->length(); i++) {
_decls->fetch (i) ->typecheck(s);
}

for (int j = 0; j < _stmts->length(); j++) {
_stmts->fetch(j)->typecheck(s);
}
}

50

Type checking

= We've covered the basic issues in how to
check semantic, type-oriented, properties
for the data types and constructs in PL/O
(and some more)

= But there are other features in languages
richer than PL/0, and we’ll look at some of
them today

Records

Records (aka structs) group heterogeneous
types into a single, usually named, unit

record R = begin
x : int;
a : array[l10] of bool;
m : char;

end record;

var t : R;

52

Type checking records

= Need to represent record type, including
fields of record

= Need to name user-defined record types
= Need to access fields of record values

= May need to handle unambiguous but not
fully qualified names (depending on
language definition)

An implementation

= Representing record type using a symbol table
for fields
¢ class RecordType: public Type {..};

+ Create RecordTypeSTE
= To typecheck expr.x
+ Typecheck expr .

— Error if not record type

AST:

+ Lookup x in record type’s symbol table
— Error if not found

+ Extract and return type of x

54

Type checking classes & modules

= A class/module is just like a record, except that it
contains procedures in addition to simple
variables

= So they are already supported by using a symbol
table to store record/class/module fields

= Procedures in the class/module can access other
fields of the class/module
+ Already supported: nest procs in record symbol table

= Inheritance?

Type conversions and coercions

= In C, can explicitly convert data of type fioat to
data of type int (and some other examples)
+ Represent it explicitly as a unary operator
+ Type checking and code generation work as normal
= In C, can also implicitly coerce

+ System must insert unary conversion operators as
part of type checking

+ Code generation works as normal

56

Type casts

= In C, Java (and some others) can explicitly
cast an object of one type to another
» Sometimes a cast means a conversion

—E.g., casts between numeric types
— Type-safe, but sometimes entails loss of accuracy

+ Sometimes a cast means just a change of

static type without any computation

—E.g., casts between pointer types
— Generally NOT type-safe

Safety of casting

= In C, the safety of casts is not checked
+ That is, it's possible to convert into a representation
that is illegal for the new type of data
+ Allows writing of low-level code that’s type-unsafe
+ More often used to work around limitations in C’s
static type system
= In Java, downcasts from superclass to subclass
include a run-time type check to preserve type
safety
+ This is the primary place where Java uses dynamic
type checking

58

Overloading: quick reminder

= Overloading arises when the same
operator or function is used to represent
distinct operations
*3 + 4
+3.14159 + 2.71828
e “mork” + “mindy”
= The compiler statically decides which “+” to
compile to based on the (type) context

Overloading in C++

= Complex: choose best match based on:
1. “Exact” match
- incl “trivialities” like array or fn name -> pointer, T -> const T
2. “Promotions”
— bool, char, short -> int; float -> dbl -> long dbl; unsigned ...
3. “Standard conversions”
— int <-->double, T* -> void*, int -> unsigned int
4. User defined conversions
Ellipsis (“...")
= Does NOT use function return type

o

60

10

Polymorphism: quick reminder

= Polymorphism is different from overloading

In overloading the same operator means different
things in different contexts

In polymorphism, the same operator works on
different types of data

* (length ‘(a b c)) vs. (length ‘((a) (b c) 3 4))

« (sort ‘(4 1 2)) vs. (sort ‘(c g a))

In polymorphism, the compiler compiles the
same code regardless

Type equivalence

= When is one type equal to another?
+ Implemented in PL/O with Type : : same function
= It’s generally “obvious” for atomic types like int,
string, user-defined types (e.g., point2d vs complex)
= What about type constructors like arrays?

var al : array[10] of int;
var a2,a3 : array[10] of int;
var ad : array[20] of int;
var ab : array[10] of bool;
var a6 : array[0:9] of int;

62

Equivalence, def I: Structural Eq.

= Two types are structurally equivalent if
they have the same structure
« If atomic types, then obvious
« If type constructors
— Same constructor
—Recursively, equivalent arguments to constructor
= Implement with recursive same

Equivalence, def II: Name Eq.

= Two types are name equivalent if they
came from the same textual occurrence of
a type constructor

= Implement with pointer equality of Type
instances

= Special case: type synonyms don’t define
new types

64

same & different

= class Type {

public:
virtual bool same (Type* t) = 0;
bool different (Type* t) { return !same(t); }

bi
class IntegerType : public Type {
public:

bool same (Type* t) { return t->isInteger(); }

Implementing structural
equivalence (details)

= Problem: want to dispatch on two arguments, not
just receiver

+ That is, choose what method to execute based on
more than the class of the receiver

= Why? There’s a symmetry that the OO dispatch
approach skews
if (lhs->different (rhs)) {..error..}
. Why not: if (different (lhs,rhs)) {..error..}

66

11

Multi-methods

= Languages that support dispatching on
more than one argument provide multi-
methods

= For example, they might look like
¢ virtual bool same(type* tl, type* t2)
{return false;}

¢ virtual bool same (IntType* tl, IntType* t2)
{return true;}

¢ virtual bool same (ProcType* tl, ProcType* t2)
{return same (tl->args,t2->args);}

= Different from static overloading in C++

But C++ has no multi-methods:
So we use double dispatching

class Type {

virtual bool same (Type* t) = 0;
virtual bool isInteger() {return false;}
virtual bool isProc() {return false;}

}i

class IntegerType : public Type {
bool same (Type* t){return t->isInteger();}
bool isInteger () {return true;}

}i

68

Where are we?

= We now know, in principle, how to
1. take a string of characters

2. convert it into an AST with associated symbol
table

3. and know that it represents a legal source
program (including semantic checks)
= That is the complete set of responsibilities (at a
high-level) of the front-end of a compiler

Next...

= ...what to do now that we have this wonderful
AST representation

= We’'ll look mostly at interpreting it or compiling it
+ But you could also analyze it for program properties

+ Or you could “unparse” it to display aspects of the
program on the screen for users

70

PL/0: Handling break

while b1 do
if b2 then break; end;
while b3 do
if b4 then break; end;
end;
end;
if b5 then break; end;

PL/0: Handling return, 1

= 3issues:
* In procedure vs function
« If function, what's return type (all must match)
« If function, do all paths hit return

72

12

PL/0: Handling return, 2

proc fl(): int; proc f2(): int;

begin begin
if b then if b then
return 5; return 5;
end; else
return 6; return 6;
end f; end;
end f;

PL/0: Handling return, 3

proc £f3(): int; proc f4(): int;

begin begin
if b then if nasty() then
return 5; return 5;
if !b then if !nasty() then
return 6; return 6;
end; end;
end f; end f;

74

PL/0: Handling return, 4

proc f5(): int;
begin
while b do
return 5;
end;
end f;

PL/0: Handling return, 5

= An approach: For each statement,does its
execution necessarily end with a return?
» For a “return”, obviously yes
« For, e.g., an assignment, obviously no

- For “if-then-else”, it depends (recursively) on
the statement lists in the then and else clauses

» Etc

76

PL/0: Handling return, 6

= What about “if X then return; end;” for
X ="true” vs X = “b” vs X = “nasty()” vs ...?
+ Analysis is sometimes possible, but quickly gets
difficult, and is Undecidable in general
+ So, make a tractable but conservative approximation:
Assume it could be either true or false, independent of
every other conditional.
+ Similar assumption for while/for loops
= Extra credit: no need to make such assumptions

for const booleans/Ioops (but think carefully about
interaction with break, altering AST in midst of TC traversal, etc.)

PL/0 does not A: array[10] of int
have 2-d arrays B:array(10] of array[5] of bool

BI7][I2] = 5<A[3]

AST class hierarchy?

Typecheck info flow?

13

