3 CSE401: Parsing

Larry Ruzzo
Spring 2004

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
©W.L.Ruzzo & UW CSE 1994-2004

i Objectives: parsing lectures

Understand:

= Theory and practice of parsing

= Underlying language theory (CFGs, ...)
= Top-down parsing (and be able to do it)
= Bottom-up parsing (time permitting)

= Today’s focus: grammars and ambiguity

i Parsing
of tokens Parser tree (AST)
= Abstract Syntax Tree (AST)

= Captures hierarchical structure of the program

= Is the primary representation of the program used
by the rest of the compiler

= It gets augmented and annotated, but the basic structure
of the AST is used throughout

i Parsing: two jobs

= Is the program syntactically correct?

a =3 * (5 + 4); if x > y then m := x;

a :=3* / 4; if x < y else m := x;

= If so, build the corresponding AST

i Context-free grammars (CFGs)

= For lexing, we used regular expressions as
the underlying notation

= For parsing, we use context-free grammars in
much the same way
= Regular expressions are not powerful enough
= Intuitively, can’t express balance/nesting (a"b", parens)
= More general grammars are more powerful than
we need

= Well, we could use more power, but instead we delay
some checking to semantic analysis instead of doing all
the analysis based on the (general, but slow) grammar

il anguages

5

CFG terminology

= Terminals: alphabet, or set of legal tokens
= Nonterminals: represent abstract syntax units

= Productions: rules defining nonterminals in
terms of a finite sequence of terminals and
nonterminals

Start symbol: root symbol defining the

language
Program ::= Stmt
Stmt ::= if Expr then Stmt else Stmt end

Stmt ::= while Expr do Stmt end

EBNF description of PL/0O

Program ::= module Id ; Block Id .

Block DeclList begin StmtList end

DeclList { Decl ; }

Decl ConstDecl | ProcDecl | VarDecl
ConstDecl ::= const ConstDeclItem {, ConstDeclItem
ConstDeclItem ::= Id : Type = ConstExpr

ConstExpr ::= Id | Integer

VarDecl ::= var VarDeclItem { , VarDeclItem }
VarDeclItem ::= Id : Type

EBNF description of PL/0O

ProcDecl HE
procedure Id ([FormalDecl {, FormalDecl}])

Block Id

FormalDecl ::= Id : Type

Type ::= int

StmtList 1= { Stmt ; }

Stmt ::= CallStmt | AssignStmt | OutStmt
IfStmt | WhileStmt

Callstmt ::=Id ([Exprs])

AssignStmt ::= Lvalue := Expr

Lvalue 1:=Id

EBNF description of PL/0O

Ooutstmt ::= output := Expr

Ifstmt if Test then StmtList end
WhileStmt while Test do StmtList end
Test odd Sum | Sum Relop Sum
Relop <= | <> <[>]|>|=
Exprs Expr {, Expr }

Expr Sum

Sum Term { (+ | -) Term }

Term Factor { (* | /) Factor }
Factor ::= - Factor | LValue | Integer

input | (Expr)

Exercise: produce a syntax
tree for squares.0

module main;
var x:int, squareret:int;
procedure square(n:int);
begin
squareret := n * n;
end square;
begin
x := input;
while x <> 0 do
square (x) ;

output := squareret;
x := input;
end;
end main.

Derivations and parsing

= Derivation
= A sequence of expansion steps,
= Beginning with the start symbol,
= Leading to a string of terminals

= Parsing: inverse of derivation
= Given a target string of terminals,

= Recover nonterminals/productions
representing structure

Parse trees

= We represent derivations and parses as
parse trees

= Concrete syntax tree
= Exact reflection of the grammar

= Abstract syntax tree

= Simplified version, reflecting key structural
information

= E.g., omit superfluous punctuation & keywords

Concrete

i Syntax Tree

i Abstract syntax trees

Concrete syntax tree Abstract syntax tree

\ a := 3 *(4+5) \

i Ex: An expression grammar

=mE ::=EOpE | -E | (E) | int
Op ti= + | = | * |/

= Using this grammar, find parse trees for:
=3 * 5
=3+ 4 %5

i Ambiguity

= Some grammars are ambiguous
= Different parse trees with the same final string
= (Some languages are ambiguous, with no possible
non-ambiguous grammar; but we avoid them)
= The structure of the parse tree captures some
of the meaning of a program
= Ambiguity is bad since it implies multiple possible
meanings for the same program
= Consider the example on the previous slide

Another famous ambiguity:

i dangling else

= Stmt ti= |
if Expr then Stmt |
if Expr then Stmt else Stmt

if el then if e2 then sl else s2

= To which then does the else belong?
= The compiler isn’t going to be confused

= However, if the compiler chooses a meaning different from
what the programmer intended, it could get ugly

= Any ideas for overcoming this problem?

i Resolving ambiguity: #1

= Add a meta-rule

= For instance, “c1se associates with the
closest previous unmatched if”

+ This works and keeps the original
grammar intact
v But it’s ad hoc and informal

i Resolving ambiguity: #2

= Rewrite the grammar to resolve it explicitly

Stmt
MatchedStmt

MatchedStmt | UnmatchedStmt
|

if Expr then MatchedStmt
else MatchedStmt
UnmatchedStmt ::= if Expr then Stmt
if Expr then MatchStmt
else UnmatchedStmt

+» Formal, no additional meta-rules
v Somewhat more obscure grammar

i Resolving ambiguity: #2 (cont.)

Stmt MatchedStmt | UnmatchedStmt
MatchedStmt

e

if Expr then MatchedStmt
else MatchedStmt

UnmatchedStmt ::= if Expr then Stmt

if Expr then MatchStmt
else UnmatchedStmt

if el then if e2 then sl else s2

Resolving ambiguity: #3

= Redesign the programming language to
remove the ambiguity

Stmt ::= if Expr then Stmt end
if Expr then Stmt else Stmt end

+ Formal, clear, elegant

» Allows StmtList in then and else branch,
without adding begin/end

¥ Extra end required for every if statement

21

What about that
expression grammar?

How to resolve its ambiguity?

= Option #1: add meta-rules for
precedence and associativity

= Option #2: modify the grammar to
explicitly resolve the ambiguity

= Option #3: redefine the language

Option #1: add meta-rules

= Add meta-rules for precedence and
associativity

‘ E:=E+EIE-EIEEIE/EIEEI(E)I-E|I ‘

" +- < */ < unary- < A etc.

= +,-,*/ left-associative; A right associative
4 Simple, intuitive
¥ But not all parsers can support this

+ yacc does

E+T|T
T*F|F
id [(E)

i Option #2: new BNF* ::

= Create a nonterminal for each precedence
level
= Expr is the lowest precedence nonterminal

= Each nonterminal can be rewritten with higher
precedence operator

= Highest precedence operator includes atomic
expressions
= At each precedence level use
= Left recursion for left-associative operators
= Right recursion for right-associative operators
= No recursion for non-associative operators

E+T|T
T*F|F

id | (®) Option #3: New language

i Option #2: example

= Require parens

= E.g., in APL all exprs evaluated left-to-right
unless parenthesized

= Forbid parens
= E.g.: RPN calculators

Designing a grammar:

i on what basis?

= Accuracy

= Readability, clarity

= Unambiguity

= Limitations of CFGs

= Similarity to desired AST structure

= Ability to be parsed by a particular parsing
algorithm
= Top-down parser => LL(k) grammar
= Bottom-up parser => LR(k) grammar

i Parsing algorithms

= Given input (sequence of tokens) and
grammar, how do we find an AST that
represents the structure of the input with
respect to that grammar?

= Two basic kinds of algorithms

= Top-down: expand from grammar’s start symbol
until a legal program is produced

= Bottom-up: create sub-trees that are merged into
larger sub-trees, finally leading to the start symbol

Top-down parsing

= Build AST from top Stmt ::= Call | Assign | If
(start symbol) to leaves |call ::= 1d
(termina|s) Assign::= Id := Expr
= Represents a leftmost if 1i= if Test then
derivation (e.g., always Stmts end
expand leftmost non- If ::= if Test then
termlnal) Stmts else
= Basic issue: when Stmts end
replacing a non-terminal

with a right-hand side
(rhs), which rhs should
you use?

Basic solution: Look at
next input tokens

Predictive parser

= A top-down parser that can select the correct
rhs looking at the next k tokens (lookahead)
= Efficient
= No backtracking is needed
= Linear time to parse
= Implementation
= Table-driven: pushdown automaton (PDA) — like
table-driven FSA plus stack for recursive FSA calls
= Recursive-descent parser [used in PL/O]
= Each non-terminal parsed by a procedure

= Call other procedures to parse sub-non-terminals,
recursively

LL(K), LR(K), ...?

= These parsers have generally snazzy names

= The simpler ones look like the ones in the title
of this slide
= The first L means “process tokens left to right”
= The second letter means
“produce a (Right / Left)most derivation”
= Leftmost => top-down
= Rightmost => bottom-up
= The k means “k tokens of lookahead”
= We won't discuss LALR(k), SLR, and lots more
parsing algorithms

31

LL(k) grammars

= It's easy to construct a predictive Common prefix
parser if a grammar is LL(k) S ::= if Test then
= Left-to-right scan on input, Stmts end |
ll.efgr?es;gerivation, k tokens of if Test then
0o
= Restrictions include ztgiz :i:e‘
= Unambiguous
= No common prefixes of length = k
= No left recursion)
= ... (more details later)... Left recursion
= Collectively, the restrictions E = EopE | .
guarantee that, given k input
tokens, one can always select the
correct rhs to expand
32

Eliminating common prefixes

= Left factor them, creating a new non-terminal
for the common prefix and/or different suffixes

= Before
= If ::= if Test then Stmts end |
if Test then Stmts else Stmts end
= After
= If ::= if Test then Stmts IfCont
IfCont ::= end | else Stmts end

¥ Grammar is a bit uglier

+ Easy to do manually in a recursive-descent
parser

i Eliminating left recursion:

= Before
E::=E+ T | T
T T*F | F
F:i=41id | (E) |

= After
E = T ECont
ECont =+ T ECont | ¢
T = F TCont
TCont = * F TCont | €
F =id | (E) | .

i Just add sugar

}
}
) .

=

+ Sugared form is still pretty readable

+ Easy to implement in hand-written
recursive descent parser

v Concrete syntax tree is not as close to
abstract syntax tree

i LL(1) Parsing Theory

Goal: Formal, rigorous description of those
grammars for which “I can figure out how to
do a top-down parse by looking ahead just
one token”, plus corresponding algorithms.

Notation:

T = Set of Terminals (Tokens)
N = Set of Nonterminals
$ = End-of-file character (T-like, but notin N U T)

i Table-driven predictive parser

= Automatically compute PREDICT table
from grammar
= PREDICT(nonterminal,input-symbol)
= action, e.g. which rhs or error

37

i Example 1

stmt ::= 1 if expr then Stmt else Stmt |
2 while Expr do Stmt |
3 begin Stmts end

LL(1) Parsing Algorithm

push S$ /* S is start symbol */
while Stack not empty
X := pop(Stack)
a = peek at next input “token” /* EOF =>$*/
if X is terminal or $
If X==a, read token a else abort;
else look at PREDICT(X, a) /* X is nonterminal*/
Empty : abort
rule X — a : push a
If not at end of input, Abort else Accept

39

Stmts ::= 4 Stmt ; Stmts | § ¢
Expr ::= 6 id
if | then |else | while | do |begin | end |id | ; | §
stmt 1 2 3
Stmts 4 4 4 5
Expr 6
Empty = erro|
38
s ::= 1 if E then S else S | if | then | else | while | do | begin |end |id | ; | $
2 while E do S |
1 2 3
3 begin Ss end
ss| 4 4 4 |5
Ss::= 45 ;Ss | 8¢
E 6
E ::= 6 id

X:

a
— I Stack:

Exercise: simulate parser on
this grammar & input; build
concrete parse tree as you go;
solution is on the web if you
want to check your answer.

“ W

‘while‘ id ‘do‘begin‘begin‘ end ‘ H ‘ end ‘$ ‘

40

Constructing PREDICT: overview

= Compute FIRST set for each rhs

= All tokens that can appear first in a derivation from
that rhs

= In case rhs can be empty, compute FOLLOW
set for each non-terminal

= All tokens that can appear right after that non-
terminal in a derivation

= Constructions of FIRST and FOLLOW sets are
interdependent

= PREDICT depends on both

M

i Example 1 (cont.)

S ::= if E then S else S

FIRST | FOLLOW

| while E do S

| begin Ss end

May be €,
never $

o FIRST() - 19 “token” from o

Definition: For any string a of terminals and non-
terminals, FIRST(a) is the set of terminals that
begin strings derived from a, together with ¢, if a
can derive €. More precisely:

Forany o € (N U T)*,
FIRST(c) =
{a€T | a="apforsomepc(NUT)*} U
{e, if . =" ¢}

i Computing FIRST— 4 cases

1. FIRST(e) ={¢}
2 Foralla€&T, FIRST(a) ={a}
s Forall A € N, repeat until no change
If there is a rule A — ¢, add(e) to FIRST(A)
For all rules A = Y,...Y, add(FIRST(Y,) - {&})
if e € FIRST(Y,) then add(FIRST(Y,) - {e})
if e € FIRST(Y,Y,) then add(FIRST(Y) - {})

if ¢ € FIRST(Y, Y,...Y,) then add(e)

i Computing FIRST (Cont.)

4. For all any string Y,...Y,€ (N U T)*, similar:
add(FIRST(Y,) - {¢})
if ¢ € FIRST(Y,) then add(FIRST(Y,) - {&})
if e € FIRST(Y,Y,) then add(FIRST(Y) - {&})

if e € FIRST(Y, Y,...Y,) then add(e)

[Note: defined for all strings; really only care about FIRST(right hand sides).]

May be $,
never €

i FOLLOW(B) - Next “token” after B

Definition: for any non-terminal B, FOLLOW(B)
is the set of terminals that can appear
immediately after B in some derivation from
the start symbol, together with $, if B can be
the end of such a derivation. ($ represents
“end of input”.) More precisely: For all B €N,

FOLLOW(B) = {a€(TU{$}) | S§="aBap
forsome a, E(NUT U {$})* }

(S is the Start symbol of the grammar.)

i Computing FOLLOW(B)

Add $ to FOLLOW(S)
Repeat until no change
For all rules A — aB [i.e. all rules with a B in r.h.s],
Add (FIRST(p) - {e}) to FOLLOW(B)
If e € FIRST(B) [in particular, if p is empty] then
Add FOLLOW(A) to FOLLOW(B)

Assume for all A that S =* ocAB for some o, € (N U T)*, else A irrelevant

a7

PREDICT — Given Ihs, which rhs?

For all rules A — a
For all a € FIRST(a) - {¢}
Add(A — «) to PREDICT(A,a)
If ¢ € FIRST(a) then
For all b € FOLLOW(A)
Add(A — o) to PREDICT(A,b)

Defn: G is LL(1) iff every cell has < 1 entry‘

48

Properties of LL(1) Grammars

= Clearly, given a conflict-free PREDICT table
(= 1 entry/cell), the parser will do something
unique with every input

= Key fact is, if the table is built as above,
that something is the correct thing

= |.e., the PREDICT table will reliably guide the
LL(1) parsing algorithm so that it will
= Find a derivation for every string in the language

= Declare an error on every string not in the
language

Exercises (1st especially recommended)

= Easy: Pick some grammar with common
prefixes, left recursion, and/or ambiguity.
= Build PREDICT; it will have conflicts

= Harder: prove that every grammar with =1 of those
properties will have PREDICT conflicts

= Harder: Find a grammar with none of those features
that nevertheless gives conflicts.
= l.e., absence of those features is necessary but not sufficient

for a grammar to be LL(1).

= Harder, for theoryheads: if the table has conflicts, and
the parser chooses among them nondeterministically,
it will work correctly

i Example 2

E :::=T { + T}
T ::=F * F }
Fo:

= {
=-F | id | (E)
E =1TE’
E' ::= 2+ TE'" | 8 ¢
T ::= 8§ * FT' | 6 ¢
F =7-F | 8id | 9 (E)

50
i Example 2 (cont.)
FIRST FOLLOW

1 E =TE'
2 E =+ T E’
3 | €
4 T =F T’
5 T =* F T/
6 | €
7 F ==-F
8 | id
9 I (E)

52

i Example 2: PREDICT

id | + - * / () $
E
B
T
T
F
5

PREDICT and LL(1)

= The PREDICT table has at most one entry in
each cell if and only if the grammar is LL(1)
= .. there is only one choice (it’s predictive) ,
making it fast to parse and easy to implement
= Multiple entries in a cell

= Arise with left recursion, ambiguity, common
prefixes, etc.

= Can patch by hand, if you know what to do
= Or use more powerful parser (LL(2), or LR(k), or...?)
= Or change the grammar

i Recursive descent parsers

= Write procedure for each non-terminal

= Each procedure selects the correct right-hand
side by peeking at the input tokens

= Then the r.h.s. is consumed

= Ifit’s a terminal symbol, verify it is next and then
advance through the token stream

= Ifit’'s a non-terminal, call corresponding procedure
= Build and return AST representing the r.h.s.

i Recursive descent example

stmt ::= 1 if expr then Stmt else Stmt |
2 while Expr do Stmt |
3 begin stmts end

Stmts ::= 4 Stmt ; Stmts | & ¢
Expr ::= 6 id
ParseStmt () {

switch (next token) {
"begin": ParseStmts () ;read "end"; break;

"while": ParseExpr (); read "do"; ParseStmt (); break;
"ifn: ParseExpr (); read "then"; ParseStmt();
read "else"; ParseStmt(); break;

default: abort;
}
1

LL(1) and Recursive Descent

= If the grammar is LL(1), it’s easy to build
a recursive descent parser
= One nonterminal/row -> one procedure
= Use 1 token lookahead to decide which rhs

= Table-driven parser's stack - recursive
call stack

= Recursive descent can handle some
non-LL(1) features, too.

57

if | then|else |while | do begin| end | id| ;| $
Example [T~ |-
LL(1) & stmts | 4 4 4 s
recursive descent [=e: e
stmt ::= 1 if expr then Stmt else Stmt |

2 while Expr do Stmt |
3 begin stmts end

Stmts ::= 4 Stmt ; Stmts | & ¢
Expr ::= 6 id
ParseStmt () {

switch (next token) {
"begin": ParseStmts () ;read "end"; break;

"while": ParseExpr (); read "do"; ParseStmt (); break;
"ifr: ParseExpr (); read "then"; ParseStmt();
read "else"; ParseStmt (); break;

default: abort;
}
1

if | then|else |while | do |begin| end| id| ; | §
Example [=T.- -
non-LL(1) & Stnee | 4 P | s
recursive descent [ewr s
1
stmt ::= |1 if expr then Stmt | The dangling
17 if expr then Stmt else Stmt | else ambiguity
2 while Expr do Stmt | & common
3 begin Stmts end prefixes
stmts ::= 4 stnt ; Stmts | S ¢€
Expr ::= 6 id
ParseStmt () {
switch (next token) {
"ifn: ParseExpr (); read "then"; ParseStmt ();
if (next token == "else")

{read "else"; ParseStmt();}
break;
"begin": ...

It’'s demo time...

= Let’s look at some of the PL/0 code to
see how the recursive descent parsing
works in practice

<stmt list> ::={ <stmt>; }
<stmt> o= <id stmt> | <out stmt>
| <if stmt> | <while stmt>

Parser::ParseStmts()

StmtArray* Parser::ParseStmts () {
StmtArray* stmts = new StmtArray; Stmt* stmt;

for (;;) |

Token t = scanner->Peek();

switch (t->kind()) {
case IDENT: stmt = ParseIdentStmt (); break;
case OUTPUT: stmt = ParseOutputStmt (); break;
case IF: stmt = ParseIfStmt (); break;
case WHILE: stmt = ParseWhileStmt (); break;
default: return stmts; // no more stmts

i
stmts->add (stmt) ;
scanner->Read (SEMICOLON) ;

61

‘ <if stmt> ::= if <test> then <stmt list> end

Parser::ParselfStmt()

Stmt* Parser::ParselfStmt () {
scanner->Read (IF);
Expr* test = ParseTest();
scanner->Read (THEN) ;
StmtArray* stmts = ParseStmts();
scanner->Read (END) ;

return new IfStmt(test, stmts);

‘ <while stmt> ::= while <test> do <stmt list> end

Parser::ParseWhileStmt()

Stmt* Parser::ParseWhileStmt () {
scanner->Read (WHILE) ;
Expr* test = ParseTest();
scanner->Read (DO) ;
StmtArray* stmts = ParseStmts();
scanner->Read (END) ;

return new WhileStmt (test, stmts);

<id stmt> = <call stmt> | <assign stmt>
<call stmt> DENT "(" [<exprs>]1")"
. <assign stm Ivalue> := <expr>
Parser) <Ivalue> == IDENT

ParseldentStmt()

Stmt* Parser:: ParseldentStmt () {
Token* id = scanner->Read (IDENT) ;
if (scanner->CondRead (LPAREN)) {
ExprArray* args;
if (scanner->CondRead (RPAREN)) {
args = NULL;
} else {
args = ParseExprs();
scanner->Read (RPAREN) ;
¥
return new CallStmt (id->ident(), args);
} else {
LvValue* lvalue = new VarRef (id->ident ());
scanner->Read (GETS) ;
return new AssignStmt (lvalue, ParseExpr());

‘ <sum> = <term>{ (+ | -) <term>} ‘

Parser::ParseSum()

Expr* Parser::ParseSum() {

Expr* expr = ParseTerm();

for (;;) |
Token* t = scanner->Peek();
if (t->kind() == PLUS || t->kind() == MINUS) {
scanner->Get () ; // eat the token
Expr* expr2 = ParseTerm();
expr = new BinOp (t->kind(), expr, expr2);
} else {

return expr;

‘ <term> = <factor>{ (* | /) <factor> } ‘

Parser::ParseTerm()

Expr* Parser::ParseTerm() {

Expr* expr = ParseFactor();
for (;;) |
Token* t = scanner->Peek();
if (t->kind() == MUL || t->kind() == DIVIDE) {
scanner->Get () ; // eat the token
Expr* expr2 = ParseFactor ();
expr = new BinOp (t->kind(), expr, expr2);
else {
return expr;

Yacc — A bottom-up-parser generator

= “yet another compiler-compiler”
= Input:

= grammar, possibly augmented with action code
= Output:

= C code to parse it and perform actions

= LALR(1) parser generator
= practical bottom-up parser
= more powerful than LL(1)
= modern updates of yacc
= yacc++, bison, byace, ... 67

Yacc input grammar Example

assignstmt: IDENT GETS expr
ifstmt: IF test THEN stmts END

| IF test THEN stmts ELSE stmts END
expr: term

| expr '+' term

| expr '-' term

factor: '-' factor
| IDENT
| INTEGER
| INPUT
| ' (" expr ")'

Yacc with actions

assignstmt: IDENT GETS expr { $$ = new AssignStmt ($1, $3);}
ifstmt: IF be THEN stmts END{ $$ = new IfStmt($2,$4,NULL);}
| IF be THEN stmts
ELSE stmts END{ $$ = new IfStmt($2,$4,$6);}

expr: term {88 =8%1; 1}

| expr '+' term { $$ = new BinOp(PLUS, $1, $3);}

| expr '-' term { $$ = new BinOp (MINUS, $1, $3);}
factor: '-' factor { $$ = new UnOp (MINUS, $2); }

| IDENT { $$ = new VarRef($1); }

| INTEGER { $$ = new IntLiteral($l); }

| INPUT { $$ = new InputExpr; }

[(" expr ")!' {88 =827 }

Parsing summary

= Discover/impose a useful (hierarchical)
structure on flat token sequence
= Represented by Abstract Syntax Tree
= Validity check syntax of input
= Could build concrete syntax tree (but don't)
= Many methods available
= Top-down: LL(1)/recursive descent common for
simple, by-hand projects
= Bottom-up: LR(1)/LALR(1)/SLR(1) common for
more complex projects
= parser generator (e.g., yacc) almost necessary

Parsing summary —
Technical details you should know

= Context-free grammars = Building a table-driven

= Definitions predictive parser
. Mlampurl‘atl.ons = LL(1) grammar: definition
(al gl(_)nftt fmItC) & common obstacles
" brefixoa " « PREDICT(nonterminal,
+ Eliminating left input symbol)
nleculrsion) = FIRST(RHS)
= Ambiguity & (semi- = FOLLOW(nonterminal)
heuristic) fixes . .
. meta-rules (code/ = Building a recursive
precedence tables) descent parser
= rewrite grammar =« Including AST

= change language

7

