
Craig Chambers 68 CSE 401

Bottom-up parsing

Construct parse tree for input from leaves up

• reducing a string of tokens to single start symbol
(inverse of deriving a string of tokens from start symbol)

“Shift-reduce” strategy:

• read (“shift”) tokens until seen r.h.s. of “correct” production

• reduce handle to l.h.s. nonterminal, then continue

• done when all input read and reduced to start nonterminal

Craig Chambers 69 CSE 401

LR parsing

LR(k) parsing

• Left-to-right scan of input, Rightmost derivation

• k tokens of lookahead

Strictly more general than LL(k)

• gets to look at whole rhs of production before deciding what
to do, not just first k tokens of rhs

• can handle left recursion and common prefixes fine

Still as efficient as any top-down or bottom-up parsing method

Complex to implement

• need automatic tools to construct parser from grammar

Craig Chambers 70 CSE 401

LR parsing tables

Construct parsing tables implementing a FSA with a stack

• rows: states of parser

• columns: token(s) of lookahead

• entries: action of parser

• shift, goto state X

• reduce production “X ::= RHS”

• accept

• error

Algorithm to construct FSA similar to
algorithm to build DFA from NFA

• each state represents set of possible places in parsing

LR(k) algorithm builds huge tables

LALR(k) algorithm has fewer states ⇒ smaller tables

• less general than LR(k), but still good in practice

• size of tables acceptable in practice

k == 1 in practice

• most parser generators, including yacc and jflex,
are LALR(1)

Craig Chambers 71 CSE 401

LR(0) parser generation

Example grammar:

P ::= S $ // always add this production

S ::= beep | { L }

L ::= S | L ; S

Key idea:
simulate where input might be in grammar as it reads tokens

"Where input might be in grammar" captured by set of items,
which forms a state in the parser’s FSA

• LR(0) item: lhs ::= rhs production, with dot in rhs
somewhere marking what’s been read (shifted) so far

• LR(k) item: also add k tokens of lookahead to each item

Initial item:

P ::= . S $

Craig Chambers 72 CSE 401

Closure

Initial state is closure of initial item

• closure: if dot before non-terminal, add all productions for
non-terminal with dot at the start

• "epsilon transitions"

Initial state (1):

P ::= . S $

S ::= . beep

S ::= . { L }

Craig Chambers 73 CSE 401

State transitions

Given set of items, compute new state(s) for each symbol
(terminal and non-terminal) after dot

• state transitions correspond to shift actions

New item derived from old item by shifting dot over symbol

• do closure to compute new state

Initial state (1):

P ::= . S $ S ::= . beep S ::= . { L }

State (2) reached on transition that shifts S:

P ::= S . $

State (3) reached on transition that shifts beep:

S ::= beep .

State (4) reached on transition that shifts {:

S ::= { . L }
L ::= . S
L ::= . L ; S
S ::= . beep
S ::= . { L }

Craig Chambers 74 CSE 401

Accepting transitions

If state has P ::= $ item,
then add transition labeled $ to the accept action

Example:

P ::= S . $

has transition labeled $ to accept action

Craig Chambers 75 CSE 401

Reducing states

If state has lhs ::= rhs . item,
then it has a reduce lhs ::= rhs action

Example:

S ::= beep .

has reduce S ::= beep action

No label; this state always reduces this production

• what if other items in this state shift, or accept?

• what if other items in this state reduce differently?

Craig Chambers 76 CSE 401

Rest of the states (part 1)

State (4): if shift beep, goto State (3)

State (4): if shift {, goto State (4)

State (4): if shift S, goto State (5)

State (4): if shift L, goto State (6)

State (5):

L ::= S .

State (6):

S ::= { L . }
L ::= L . ; S

State (6): if shift }, goto State (7)

State (6): if shift ;, goto State (8)

State (7):

S ::= { L } .

Craig Chambers 77 CSE 401

Rest of the states (part 2)

State (8):

L ::= L ; . S
S ::= . beep
S ::= . { L }

State (8): if shift beep, goto State (3)

State (8): if shift {, goto State (4)

State (8): if shift S, goto State (9)

State (9):

L ::= L ; S .

(whew)

Craig Chambers 78 CSE 401

Building table from the states & transitions

Create a row for each state

Create a column for each terminal, non-terminal, and $

For every "state (i): if shift X goto state (j)" transition:

• if X is a terminal, put "shift, goto j" action in row i, column X

• if X is a non-terminal, put "goto j" action in row i, column X

For every "state (i): if $ accept" transition:

• put "accept" action in row i, column $

For every "state (i): reduce lhs ::= rhs" action:

• put "reduce lhs ::= rhs" action in all columns of row i

Craig Chambers 79 CSE 401

Table for this grammar

State { } beep ; S L $

1 s,g4 s,g3 g2

2 a!

3 reduce S ::= beep

4 s,g4 s,g3 g5 g6

5 reduce L ::= S

6 s,g7 s,g8

7 reduce S ::= { L }

8 s,g4 s,g3 g9

9 reduce L ::= L ; S

Craig Chambers 80 CSE 401

Example

Input: { beep ; { beeep } } $

Craig Chambers 81 CSE 401

Problems in shift-reduce parsing

Can write grammars that cannot be handled with shift-reduce
parsing

Shift/reduce conflict:

• state has both shift action(s) and reduce actions

Reduce/reduce conflict:

• state has more than one reduce action

Craig Chambers 82 CSE 401

Shift/reduce conflicts

LR(0) example:

E ::= E + T | T

State:

E ::= E . + T
E ::= T .

Can shift +

Can reduce E ::= T

LR(k) example:

S ::= if E then S |

if E then S else S | ...

State:

S ::= if E then S .
S ::= if E then S . else S

Can shift else

Can reduce S ::= if E then S

Craig Chambers 83 CSE 401

Avoiding shift/reduce conflicts

Can rewrite grammar to remove conflict

• E.g. MatchedStmt vs. UnmatchedStmt

Can resolve in favor of shift action

• tries to find longest r.h.s. before reducing

• works well in practice

• yacc, jflex, et al. do this

Craig Chambers 84 CSE 401

Reduce/reduce conflicts

Example:

Stmt ::= Type id ; | LHS = Expr ; | ...

...

LHS ::= id | LHS [Expr] | ...

...

Type ::= id | Type [] | ...

State:

Type ::= id .

LHS ::= id .

Can reduce Type ::= id

Can reduce LHS ::= id

Craig Chambers 85 CSE 401

Avoiding reduce/reduce conflicts

Can rewrite grammar to remove conflict

• can be hard

• e.g. C/C++ declaration vs. expression problem

• e.g. MiniJava array declaration vs. array store problem

Can resolve in favor of one of the reduce actions

• but which?

• yacc, jflex, et al. pick reduce action for production listed
textually first in specification

