
a

CSE 401, © L. Snyder and UW CSE, 1994-2003 1

CSE401: Optimization

Larry Snyder
Spring 2003

Slides by Chambers, Eggers, Notkin, Ruzzo, Snyder and others
© L. Snyder and UW CSE, 1994-2003

2

������
�����	

Stream
of characters

Sequence
of tokens

Lexical analysis

Abstract Syntax
Tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Target code generation

Executable
code

�	����
�����	

Prototype compiler structure

3

Optimization

n Identify inefficiencies in target or
intermediate code

n Replace with equivalent but “better”
sequences

n “Optimize” is a lie.
“Usually improve” is more honest.

4

Example
x : = a[i] + b[2] ;

c[i] : = x – 5;

t1 := *(fp + ioffset) // i
t2 := t1 * 4
t3 := fp + t2
t4 := *(t3 + aoffset) // a[i]
t5 := 2
t6 := t5 * 4
t7 := fp + t6
t8 := *(t7 + boffset) // b[2]
t9 := t4 + t8
*(fp + xoffset) := t9 // x := …
t10 := *(fp + xoffset) // x
t11 := 5
t12 := t10 – t11
t13 := *(fp + ioffset) // i
t14 := t13 * 4
t15 := fp + t14
*(t15 + coffset) := t12 // c[i] := …

5

Kinds of optimizations

n Scope of analysis is central to what
optimizations can be performed. A larger
scope may expose better optimizations, but is
more complex
n Peephole: look at adjacent instructions

n Local: look at straight-line sequences of
instructions

n Global (intraprocedural): look at whole procedure

n Interprocedural: look across proceduresIn
cr

ea
si

ng
 s

co
pe

,

o
pp

o
rt

un
ity

, a
nd

co

m
pl

ex
ity

6

Peephole

n After codegen, look at a few adjacent
instructions
n Try to replace them with something better

n If you have
sw $8, 12($f p)
l w $12, 12($f p)

n You can replace it with
sw $8, 12($f p)
mv $12, $8

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 2

7

Peephole examples: 68k

If you have

sub sp, 4, sp
mov r 1, 0(sp)

mov 12(f p) , r 1
add r 1, 1, r 1
mov r 1, 12(f p)

Replace it with

mov r 1, - (sp)

i nc 12(f p)

8

Peephole optimization of jumps

n Eliminate
n Jumps to jumps

n Conditional
branch over
unconditional
branch

n “Adjacent
instructions”
means
“adjacent in
control flow”

i f a < b t hen

i f c < d t hen

do not hi ng

el se

s t mt 1;

end;

el se

s t mt 2;

end;

i f (a�b) got o 1

i f (c�d) got o 2
#do not hi ng

got o 3

2: s t mt 1

3:

got o 4

1: s t mt 2

4:

9

How to do peephole opts

n Could be done at IR and/or target level
n Catalog of specific code rewrite

templates
n Scan code with moving window looking

for matches

10

Peephole summary

n You could consider peephole
optimization as increasing the
sophistication of instruction selection

n Relatively easy to do
n Relatively easy to extend
n Relatively easy to ensure correctness
n Relatively high payoff

11

Algebraic simplifications
by peephole or codegen

n “constant folding” and “strength
reduction” are common names for this
kind of optimization
n z : = 3 + 4
n z : = x + 0

z : = x * 1
n z : = x * 2

z : = x * 8
z : = x / 8

n f l oat x, y ;
z : = (x + y) – y;

12

n Analysis and optimizations within a basic
block

A basic block is a straight-line sequence
of statements with no control flow into or
out of the middle of the sequence

n Local optimizations are more powerful than
peephole (e.g., block may be longer than peephole window)

n Not too hard to implement
n Can be machine-independent, if done on

intermediate code

Local optimization

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 3

13

Local constant propagation
(aka "constant folding")

n If a constant is assigned to a variable,
replace downstream uses of the
variable with the constant

n If all operands are const, replace with
result

n May enable further constant folding

14

Example

const count : i nt = 10;

…

x : = count * 5;

y : = x ^ 3;

t 1 : = 10

t 2 : = 5

t 3 : = t 1 * t 2

x : = t 3

t 4 : = x

t 5 : = 3

t 6 : = exp(t 4, t 5)

y : = t 6

15

Local dead assignment elimination

n If the left hand side of an assignment is
never read again before being
overwritten, then remove the
assignment

n This sometimes happens while cleaning
up from other optimizations (as with
many of the optimizations we consider)

16

Example

const count : i nt = 10;

…

x : = count * 5;

y : = x ^ 3;

x : = i nput ;

x : = 50
t 6 : = exp(50, 3)
y : = t 6
x : = i nput ()

Intermediate code after
constant propagation

17

Common subexpression elimination

n Avoid repeating the same calculation
n Requires keeping track of available

expressions

18

CSE example: … a[i] + b[i] …

t 1 : = * (f p + i of f set)

t 2 : = t 1 * 4

t 3 : = f p + t 2

t 4 : = * (t 3 + aof f set)

t 5 : = * (f p + i of f set)

t 6 : = t 5 * 4

t 7 : = f p + t 6

t 8 : = * (t 7 + bof f set)

t 9 : = t 4 + t 8

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 4

19

Next
n Intraprocedural optimizations

n Code motion
n Loop induction variable elimination
n Global register allocation

n Interprocedural optimizations
n Inlining

n After that…how to implement these
optimizations

n ���� other kinds of optimizations, beyond the
scope of this class, e.g. dynamic compilation

20

Intraprocedural optimizations

n Enlarge scope of analysis to entire procedure
n Provides more opportunities for optimization

n Have to deal with branches, merges and loops

n Can do constant propagation, common
subexpression elimination, etc. at this level

n Can do new things, too, like
loop optimizations

n Optimizing compilers usually work at this level

21

Code motion

n Goal: move loop-invariant calculations
out of loops

n Can do this at the source or
intermediate code level

f or i : = 1 t o 10 do
a[i] : = a[i] + b[j] ;
z : = z + 10000

end

22

At intermediate code level
f or i : = 1 t o 10
do

a[i] : = b[j] ;
end

* (f p+i of f set) : = 1
_l 0:

i f * (f p+i of f set) > 10 got o _l 1
t 1 : = * (f p+j of f set)
t 2 : = t 1* 4
t 3 : = f p+t 2
t 4 : = * (t 3+bof f set)
t 5 : = * (f p+i of f set)
t 6 : = t 5* 4
t 7 : = f p+t 6
* (t 7+aof f set) : = t 4
t 8 : = * (f p+i of f set)
t 9 : = t 8+1
* (f p+i of f set) : = t 9
got o _l 0

_l 1:

23

Loop induction variable elimination

n For-loop index is an induction variable
n Incremented each time through the loop

n Offsets, pointers calculated from it

n If used only to index arrays, can rewrite with
pointers
n Compute initial offsets, pointers before loop

n Increment offsets, pointers each time around loop

n No expensive scaling in the loop

24

Example
f or i : = 1 t o 10 do

a[i] : = a[i] + x;
end

f or p : = &a[1] t o &a[10] do
* p : = * p + x;

end

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 5

25

Global register allocation
n Try to allocate local

variables to registers
n If two locals don’t

overlap, then give
them the same
register

n Try to allocate most
frequently used
variables to registers
first

pr oc f (n: i nt , x: i nt) : i nt ;
var sum: i nt , i : i nt ;

begi n
sum : = x;
f or i : = 1 t o n do

sum : = sum + i ;
end
r et ur n sum;

end f ;

26

Register allocation by coloring

n As before, IR gen as if infinite regs avail
n Build interference graph:

x : = a+5;
y : = b* 2;
z : = x / 3;

a : = y - 2;

n Colorable with few colors (regs)?
nNP-hard, but …

n If not, pick a node & generate spill code

x z

y

27

Interprocedural optimizations
n What happens if we expand the scope of the

optimizer to include procedures calling each
other
n In the broadest scope, this is optimization of the

program as a whole

n We can do local, intraprocedural
optimizations at a bigger scope
n For example, constant propagation

n But we can also do entirely new
optimizations, such as inlining

28

Interprocedural opt: Issues
pr ocedur e P() {

x: i nt ;

x : = 10;

Q() ;

x: = x+1;

i f x == 11 t hen
…

n Q()

n Q(x by value)

n Q(x by reference)
n Q(const x by reference)

n Q(), but Q declared in P

n …

29

Inlining
Replace procedure call with the body of the called

procedure

const pi : r eal : = 3. 14159;

pr oc ar ea(r ad: i nt) : i nt ;

begi n

r et ur n pi * (r ad^2) ;

end;

…

r : = 5;

…

out put : = ar ea(r) ;

const pi : r eal : = 3. 14159;

pr oc ar ea(r ad: i nt) : i nt ;

begi n

r et ur n pi * (r ad^2) ;

end;

…

r : = 5;

…

out put : = pi * (r ^2) ;

30

Questions about inlining:
few answers

n How to decide where the payoff is
sufficient to inline?
n The real decision depends on dynamic

information about frequency of calls

n In most cases, inlining causes the code
size to increase; when is this
acceptable?

n Others?

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 6

31

Optimization and debugging
n Debugging optimized code is often hard
n For example, what if:

n Source code statements have been reordered?
n Source code variables have been eliminated?
n Code is inlined?

n In general, the more optimization there is, the
more complex the back-mapping is from the
target code to the source code … which can
confuse a programmer

32

Summary of optimization
n Larger scope of analysis yields better results

n Most of today’s optimizing compilers work at the
intraprocedural level, with some doing some work at the
interprocedural level

n Optimizations are usually organized as collections of
passes

n The presence of optimizations may make other parts
of the compiler (e.g., code gen) easier to write
n E.g., use a simple instruction selection algorithm, knowing

that the optimizer can, in essence, act to improve these
instruction selections

33

Implementing intraprocedural
optimizations

n The heart of implementing optimizations
is the definition and construction of a
convenient representation

n We’ll look a bit more closely at two
common and useful representations
n The control flow graph (CFG)
n The data flow graph (DFG)

34

CFG

n Nodes are intermediate language statements
n Or whole basic blocks

n Edges represent control flow
n Node with multiple successors is a

branch/switch
n Node with multiple predecessors is a merge
n Loop in a graph represents a loop in the

program

35

x > y

x := x+1

Yes No

x > 0

output := x

Yes No

y := input

x := input

Example
whi l e x > y do

x : = x + 1;
end;

i f x > 0 t hen
out put : = x;

end;

36

DFG: def/use chains

n Nodes are def(initions) and uses
n Edge from def to use
n A def can reach multiple uses
n A use can have multiple reaching defs

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 7

37

y := inputx := input

x > y

x := x + 1x > 0

output := x

Example
x : = i nput ;
y : = i nput ;

whi l e x > y do
x : = x + 1;

end;

i f x > 0 t hen
out put : = x;

end;

38

Example program
CFG and DFG in groups

x : = 3;

y : = x * x;

i f y > 10 t hen

x : = 5;

y : = y + 1;

el se

x : = 6;

y : = x + 4;

end;

w : = y / 3;
whi l e y > 0 do

z : = w * w;
x : = x – z;
y : = y – 1;

end;

out put : = x;

39

Analysis and transformation
n Each optimization is one or more analyses followed

by a transformation
n Analyze CFG and/or DFG by propagating information

forward or backward along CFG and/or DFG edges
n Merges in graph require combining information
n Loops in graph require iterative approximation

n Perform improving transformations based on
information computed
n Have to wait until any iterative approximation has converged

n Analysis must be conservative, so that
transformations preserve program behavior

40

A simple analysis
n Let’s start with a simple

analysis that can help
us determine which
assignments can be
eliminated from a basic
block

n The example is
unreasonable as
source, but perhaps not
as intermediate code

pr oc f oo(j , k ,
l : i nt) : i nt
begi n

i nt a, b, c , n, x ;
a : = 17 * j ;
b : = k * k;
c : = a + b;
a : = k * 7;
r et ur n c;

end

41

Liveness analysis
n This analysis is a form of liveness analysis

n It can help identify assignments to remove
n It can also form the basis for memory and register

optimizations

n The goal is to identify which variables are live and
which are dead at given program points

n The analysis is usually performed backwards
n When a variable is used, it becomes lives in that statement

and code before it
n When a variable is assigned to, it becomes dead for all code

before it

n Note the relationship to def-use, as we saw in the
data flow graph

42

Work backwards
Live Dead

pr oc f oo(j , k , l : i nt) : i nt
begi n

i nt a, b, c , n, x ;
a : = 17 * j ; ? ?
b : = k * k; ? ?
c : = a + b; {k,l,a,b,c} {j,n,x}
a : = k * l ; {k,l,c} {j,n,x,a,b}
r et ur n c; {c} {j,k,l,n,

end x,a,b}

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 8

43

So?

n This analysis shows we can eliminate the last
assignment to a, which is no surprise

n Technically, assignments to a dead variable
can be removed
n The value isn’t needed below, so why do the

assignment?

n Furthermore, you could show for this example
that the declarations for n and x aren’t
needed, since n nor x is ever live

44

Then…
n After eliminating the last assignment (and

these two declarations), you can redo the
analysis

n This analysis now shows that l is dead
everywhere in the block, and it can be
removed as a parameter

n The stack can be reduced because of this
n And the caller could, in principle, be further

optimized

45

Well, that was easy

n But that’s for basic blocks
n Once we have control flow, it’s much harder

to do because we don’t know the order in
which the basic blocks will execute

n We need to ensure (for optimization) that
every possible path is accounted for, since
we must make conservative assumptions to
guarantee that the optimized code always
works

46

Global data flow analysis
n We’re going to need something called global data

flow analysis
n The form we’re interested in for live variable analysis

(across basic blocks) is any-path analysis
n An any-path property is true is there exists some path

through the control flow graph such that the given property
holds

n For example, a variable is live if there is some path leading to it
being accessed

n For example, a variable is uninitialized if there is some path that
does not initialize it

n All-path is the other major form of analysis

47

Example (Dragon, p. 609)

n Let’s now consider this
analysis over a control
flow graph
n Basic blocks connected

by edges showing
possible control flow

n We will omit the
conditionals and labels
on edges, since that’s
fine for any-path analysis

n This is extremely
conservative (safe)

d1: i : = m- 1
d2: j : = n
d3: a : = u1

d4: i : = i +1

d5: j : = j +1

d6: a : = u2

B1

B2

B3

B4

B6B5

48

Some more terminology
n A definition of a variable x is a statement that assigns

a value to x
n (The book discussed unambiguous vs. ambiguous

definitions, but we’ll ignore this)

n A definition d reaches a program point p if
n There is a path from the point immediately

following d to p
n And d is not killed along that path

n We’re now really giving formal definitions to
these terms, but we’ve used them before

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 9

49

Examples

n d1, d2, d5 reach the beginning of B2
n d2 does not reach B4, B5, or B6

n Note: this is a conservative analysis,
since it may determine that a definition
reaches a point even if it might not in
practice

50

But how to compute in
general?

n We’d like to be able to compute all
reaching definitions (for example)

n Let’s consider a simple language
n It turns out to be very material
n Complex languages impose really serious

demands on data flow analysis
n S ::= id := E | S ; S | if E then S else S | do S while

E
E ::= id + id | id

51

Data flow equations

n We’re now going to define a set of equations
that represent the flow through different
constructs in the language

n For example
n out[S] = gen[S] � (in[S] – kill[S])
n “The information at the end of S is either

generated within the statement (gen(S)) or enters
at the beginning of the statement (in(S)) and is not
killed by the statement (-kill(S))”

52

Example: d: a : = b+c

n gen[S] = {d}
n kill[S] = Da – {d}

n out[S] = gen[S] � (in[S] – kill[S])

n Da is the set of all definitions in the program
for variable a

53

Example: S1 ; S2

n gen[S] = gen[S2] � (gen[S1] – kill[S2])
n kill[S] = kill[S2] � (kill[S1] – gen[S2])
n in[S1] = in[S]
n in[S2] = out[S1]
n out[S] = out[S2]

54

Example: if E then S1 else S2
fi

n gen[S] = gen[S1] � gen[S2]
n kill[S] = kill[S1] � kill[S2]
n in[S1] = in[S]
n in[S2] = in[S]

n out[S] = out[S1] � out[S2]

a

CSE 401, © L. Snyder and UW CSE, 1994-2003 10

55

Example: while E do S1

n gen[S] = gen[S1]
n kill[S] = kill[S1]

n in[S1] = in[S] � gen[S1]
n out[S] = out[S1]

56

Then what?
n In essence, this defines a set of rules by

which we can write down the relationships for
gen/kill and in/out for a whole (structured)
program

n This defines a set of equations that then need
to be solved

n This solution can be complicated
n We don’t know if/when branches are taken
n Loops introduce complications
n Merges introduce complications

n Approaches to solutions: next lecture

