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Prototype compiler structure
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Optimization

n Identify inefficiencies in target or 
intermediate code

n Replace with equivalent but “better” 
sequences

n “Optimize” is a lie.  
“Usually improve” is more honest.
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Example
x : = a[ i ]  + b[ 2] ;

c[ i ]  : = x  – 5;

t1  := *(fp + ioffset) // i
t2  := t1 * 4
t3  := fp + t2
t4  := *(t3 + aoffset) // a[i]
t5  := 2
t6  := t5 * 4
t7  := fp + t6
t8  := *(t7 + boffset) // b[2]
t9  := t4 + t8
*(fp + xoffset) := t9 // x := …
t10 := *(fp + xoffset) // x
t11 := 5
t12 := t10 – t11
t13 := *(fp + ioffset) // i
t14 := t13 * 4
t15 := fp + t14
*(t15 + coffset) := t12 // c[i] := …
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Kinds of optimizations

n Scope of analysis is central to what
optimizations can be performed. A larger 
scope may expose better optimizations, but is 
more complex
n Peephole: look at adjacent instructions

n Local: look at straight-line sequences of 
instructions

n Global (intraprocedural): look at whole procedure

n Interprocedural: look across proceduresIn
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Peephole

n After codegen, look at a few adjacent 
instructions
n Try to replace them with something better

n If you have
sw $8, 12( $f p)
l w $12, 12( $f p)

n You can replace it with
sw $8, 12( $f p)
mv $12, $8
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Peephole examples: 68k

If you have  

sub sp, 4, sp
mov r 1, 0( sp)

mov 12( f p) , r 1
add r 1, 1, r 1
mov r 1, 12( f p)

Replace it with

mov r 1, - ( sp)

i nc 12( f p)
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Peephole optimization of jumps

n Eliminate 
n Jumps to jumps

n Conditional 
branch over 
unconditional 
branch

n “Adjacent 
instructions” 
means 
“adjacent in 
control flow”

i f  a < b t hen

i f  c < d t hen

# do not hi ng

el se

s t mt 1;

end;

el se

s t mt 2;

end;

i f  ( a�b) got o 1

i f  ( c�d) got o 2
#do not hi ng

got o 3

2: s t mt 1

3:

got o 4

1: s t mt 2

4:
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How to do peephole opts

n Could be done at IR and/or target level
n Catalog of specific code rewrite 

templates
n Scan code with moving window looking 

for matches
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Peephole summary

n You could consider peephole 
optimization as increasing the 
sophistication of instruction selection

n Relatively easy to do
n Relatively easy to extend
n Relatively easy to ensure correctness
n Relatively high payoff
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Algebraic simplifications
by peephole or codegen

n “constant folding” and “strength 
reduction” are common names for this 
kind of optimization
n z : = 3 + 4
n z : = x  + 0

z : = x  *  1
n z : = x  *  2

z : = x  *  8
z : = x  /  8

n f l oat  x, y ;
z : = ( x + y)  – y;

12

n Analysis and optimizations within a basic 
block

A basic block is a straight-line sequence 
of  statements with no control flow into or 
out of the middle of the sequence

n Local optimizations are more powerful than 
peephole (e.g., block may be longer than peephole window)

n Not too hard to implement
n Can be machine-independent, if done on 

intermediate code

Local optimization



a

CSE 401, © L. Snyder and UW CSE, 1994-2003 3

13

Local constant propagation
(aka "constant folding")

n If a constant is assigned to a variable, 
replace downstream uses of the 
variable with the constant

n If all operands are const, replace with 
result

n May enable further constant folding

14

Example

const  count  :  i nt  = 10;

…

x : = count  *  5;

y : = x ^  3;

t 1  : = 10

t 2  : = 5

t 3  : = t 1 *  t 2

x   : = t 3

t 4  : = x

t 5  : = 3

t 6  : = exp( t 4, t 5)

y   : = t 6
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Local dead assignment elimination

n If the left hand side of an assignment is 
never read again before being 
overwritten, then remove the 
assignment

n This sometimes happens while cleaning 
up from other optimizations (as with 
many of the optimizations we consider)
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Example

const  count  :  i nt  = 10;

…

x : = count  *  5;

y : = x ^  3;

x : = i nput ;

x  : = 50
t 6 : = exp( 50, 3)
y  : = t 6
x  : = i nput ( )

Intermediate code after 
constant propagation
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Common subexpression elimination

n Avoid repeating the same calculation
n Requires keeping track of available 

expressions

18

CSE example:  … a[ i ]  + b[ i ] …

t 1  : = * ( f p + i of f set )

t 2  : = t 1 *  4

t 3  : = f p + t 2

t 4  : = * ( t 3 + aof f set )

t 5  : = * ( f p + i of f set )

t 6  : = t 5 *  4

t 7  : = f p + t 6

t 8  : = * ( t 7 + bof f set )

t 9  : = t 4 + t 8
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Next
n Intraprocedural optimizations

n Code motion
n Loop induction variable elimination
n Global register allocation

n Interprocedural optimizations
n Inlining

n After that…how to implement these 
optimizations

n ���� other kinds of optimizations, beyond the 
scope of this class, e.g. dynamic compilation

20

Intraprocedural optimizations

n Enlarge scope of analysis to entire procedure
n Provides more opportunities for optimization

n Have to deal with branches, merges and loops

n Can do constant propagation, common 
subexpression elimination, etc. at this level

n Can do new things, too, like 
loop optimizations

n Optimizing compilers usually work at this level

21

Code motion

n Goal: move loop-invariant calculations 
out of loops

n Can do this at the source or 
intermediate code level

f or  i  : = 1 t o 10 do
a[ i ]  : = a[ i ]  + b[ j ] ;
z : = z + 10000

end
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At intermediate code level
f or  i  : = 1 t o 10 
do

a[ i ]  : = b[ j ] ;
end

* ( f p+i of f set )  : = 1
_l 0:

i f  * ( f p+i of f set )  > 10 got o _l 1
t 1 : = * ( f p+j of f set )
t 2 : = t 1* 4
t 3 : = f p+t 2
t 4 : = * ( t 3+bof f set )
t 5 : = * ( f p+i of f set )
t 6 : = t 5* 4
t 7 : = f p+t 6
* ( t 7+aof f set )  : = t 4
t 8 : = * ( f p+i of f set )
t 9 : = t 8+1
* ( f p+i of f set )  : = t 9
got o _l 0

_l 1:  
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Loop induction variable elimination

n For-loop index is an induction variable
n Incremented each time through the loop

n Offsets, pointers calculated from it

n If used only to index arrays, can rewrite with 
pointers
n Compute initial offsets, pointers before loop

n Increment offsets, pointers each time around loop

n No expensive scaling in the loop

24

Example
f or  i  : = 1 t o 10 do

a[ i ]  : = a[ i ]  + x;
end

f or  p : = &a[ 1]  t o &a[ 10]  do
* p : = * p + x;

end
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Global register allocation
n Try to allocate local 

variables to registers
n If two locals don’t 

overlap, then give 
them the same 
register

n Try to allocate most 
frequently used 
variables to registers 
first

pr oc f ( n: i nt , x: i nt ) : i nt ;
var  sum:  i nt ,  i : i nt ;

begi n
sum : = x;
f or  i  : = 1 t o n do

sum : = sum + i ;
end
r et ur n sum;

end f ;
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Register allocation by coloring

n As before, IR gen as if infinite regs avail
n Build interference graph:

x : = a+5;
y : = b* 2;
z : = x / 3;

a : = y - 2;

n Colorable with few colors (regs)?
nNP-hard, but …

n If not, pick a node & generate spill code

x z

y
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Interprocedural optimizations
n What happens if we expand the scope of the 

optimizer to include procedures calling each 
other
n In the broadest scope, this is optimization of the 

program as a whole

n We can do local, intraprocedural 
optimizations at a bigger scope
n For example, constant propagation

n But we can also do entirely new 
optimizations, such as inlining

28

Interprocedural opt: Issues
pr ocedur e P( )  {

x:  i nt ;

x : = 10;

Q(            ) ;

x: = x+1;

i f  x  == 11 t hen 
…

n Q()

n Q(x by value)

n Q(x by reference)
n Q(const x by reference)

n Q(), but Q declared in P

n …

29

Inlining
Replace procedure call with the body of the called 

procedure

const  pi : r eal  : = 3. 14159;

pr oc ar ea( r ad: i nt ) : i nt ;

begi n

r et ur n pi * ( r ad^2) ;

end;

…

r  : = 5;

…

out put  : = ar ea( r ) ;

const  pi : r eal  : = 3. 14159;

pr oc ar ea( r ad: i nt ) : i nt ;

begi n

r et ur n pi * ( r ad^2) ;

end;

…

r  : = 5;

…

out put  : = pi * ( r ^2) ;

30

Questions about inlining:
few answers

n How to decide where the payoff is 
sufficient to inline?
n The real decision depends on dynamic 

information about frequency of calls

n In most cases, inlining causes the code 
size to increase; when is this 
acceptable?

n Others?
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Optimization and debugging
n Debugging optimized code is often hard
n For example, what if:

n Source code statements have been reordered?
n Source code variables have been eliminated?
n Code is inlined?

n In general, the more optimization there is, the 
more complex the back-mapping is from the 
target code to the source code … which can 
confuse a programmer

32

Summary of optimization
n Larger scope of analysis yields better results

n Most of today’s optimizing compilers work at the 
intraprocedural level, with some doing some work at the 
interprocedural level

n Optimizations are usually organized as collections of 
passes

n The presence of optimizations may make other parts 
of the compiler (e.g., code gen) easier to write
n E.g., use a simple instruction selection algorithm, knowing 

that the optimizer can, in essence, act to improve these 
instruction selections
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Implementing intraprocedural 
optimizations

n The heart of implementing optimizations 
is the definition and construction of a 
convenient representation

n We’ll look a bit more closely at two 
common and useful representations
n The control flow graph (CFG)
n The data flow graph (DFG)

34

CFG

n Nodes are intermediate language statements
n Or whole basic blocks

n Edges represent control flow
n Node with multiple successors is a 

branch/switch
n Node with multiple predecessors is a merge
n Loop in a graph represents a loop in the 

program

35

x > y

x := x+1

Yes No

x > 0

output := x

Yes No

y := input

x := input

Example
whi l e x > y do

x :  = x + 1;
end;

i f  x > 0 t hen
out put  : = x;

end;

36

DFG: def/use chains

n Nodes are def(initions) and uses
n Edge from def to use
n A def can reach multiple uses
n A use can have multiple reaching defs
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y := inputx := input

x > y

x := x + 1x > 0

output := x

Example
x : = i nput ;
y : = i nput ;

whi l e x > y do
x :  = x + 1;

end;

i f  x > 0 t hen
out put  : = x;

end;

38

Example program
CFG and DFG in groups

x : = 3;

y : = x *  x;

i f  y > 10 t hen

x  : = 5;

y  : = y + 1;

el se

x  : = 6;

y  : = x + 4;

end;

w : = y /  3;
whi l e y  > 0 do

z  : = w *  w;
x  : = x – z;
y  : = y – 1;

end;

out put   : = x;
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Analysis and transformation
n Each optimization is one or more analyses followed 

by a transformation
n Analyze CFG and/or DFG by propagating information 

forward or backward along CFG and/or DFG edges
n Merges in graph require combining information
n Loops in graph require iterative approximation

n Perform improving transformations based on 
information computed
n Have to wait until any iterative approximation has converged

n Analysis must be conservative, so that 
transformations preserve program behavior
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A simple analysis
n Let’s start with a simple 

analysis that can help 
us determine which 
assignments can be 
eliminated from a basic 
block

n The example is 
unreasonable as 
source, but perhaps not 
as intermediate code

pr oc f oo( j ,  k ,  
l : i nt ) : i nt
begi n

i nt  a,  b,  c ,  n,  x ;
a : = 17 *  j ;
b : = k *  k;
c  : = a + b;
a : = k *  7;
r et ur n c;

end
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Liveness analysis
n This analysis is a form of liveness analysis

n It can help identify assignments to remove
n It can also form the basis for memory and register 

optimizations

n The goal is to identify which variables are live and 
which are dead at given program points

n The analysis is usually performed backwards
n When a variable is used, it becomes lives in that statement 

and code before it
n When a variable is assigned to, it becomes dead for all code 

before it

n Note the relationship to def-use, as we saw in the 
data flow graph

42

Work backwards
Live Dead

pr oc f oo( j ,  k ,  l : i nt ) : i nt
begi n

i nt a,  b,  c ,  n,  x ;
a : = 17 *  j ; ? ?
b : = k *  k; ? ?
c : = a + b; {k,l,a,b,c} {j,n,x}
a : = k *  l ; {k,l,c} {j,n,x,a,b}
r et ur n c; {c} {j,k,l,n,

end x,a,b}
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So?

n This analysis shows we can eliminate the last 
assignment to a, which is no surprise

n Technically, assignments to a dead variable 
can be removed
n The value isn’t needed below, so why do the 

assignment?

n Furthermore, you could show for this example 
that the declarations for n and x aren’t 
needed, since n nor x is ever live
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Then…
n After eliminating the last assignment (and 

these two declarations), you can redo the 
analysis

n This analysis now shows that l is dead 
everywhere in the block, and it can be 
removed as a parameter

n The stack can be reduced because of this
n And the caller could, in principle, be further 

optimized
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Well, that was easy

n But that’s for basic blocks
n Once we have control flow, it’s much harder 

to do because we don’t know the order in 
which the basic blocks will execute

n We need to ensure (for optimization) that 
every possible path is accounted for, since 
we must make conservative assumptions to 
guarantee that the optimized code always 
works
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Global data flow analysis
n We’re going to need something called global data 

flow analysis
n The form we’re interested in for live variable analysis 

(across basic blocks) is any-path analysis
n An any-path property is true is there exists some path 

through the control flow graph such that the given property 
holds

n For example, a variable is live if there is some path leading to it 
being accessed

n For example, a variable is uninitialized if there is some path that 
does not initialize it

n All-path is the other major form of analysis

47

Example (Dragon, p. 609)

n Let’s now consider this 
analysis over a control 
flow graph
n Basic blocks connected 

by edges showing 
possible control flow

n We will omit the 
conditionals and labels 
on edges, since that’s 
fine for any-path analysis

n This is extremely 
conservative (safe)

d1:  i  : = m- 1
d2:  j  : = n
d3:  a : = u1

d4:  i  : = i +1

d5:  j  : = j +1

d6:  a : = u2

B1

B2

B3

B4

B6B5

48

Some more terminology
n A definition of a variable x is a statement that assigns 

a value to x
n (The book discussed unambiguous vs. ambiguous 

definitions, but we’ll ignore this)

n A definition d reaches a program point p if
n There is a path from the point immediately 

following d to p
n And d is not killed along that path

n We’re now really giving formal definitions to 
these terms, but we’ve used them before
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Examples

n d1, d2, d5 reach the beginning of B2
n d2 does not reach B4, B5, or B6

n Note: this is a conservative analysis, 
since it may determine that a definition 
reaches a point even if it might not in 
practice
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But how to compute in 
general?

n We’d like to be able to compute all 
reaching definitions (for example)

n Let’s consider a simple language
n It turns out to be very material
n Complex languages impose really serious 

demands on data flow analysis
n S ::= id := E | S ; S | if E then S else S | do S while

E
E ::= id + id | id

51

Data flow equations

n We’re now going to define a set of equations 
that represent the flow through different 
constructs in the language

n For example
n out[S] = gen[S] � (in[S] – kill[S])
n “The information at the end of S is either 

generated within the statement (gen(S)) or enters 
at the beginning of the statement (in(S)) and is not 
killed by the statement (-kill(S))”

52

Example: d: a : = b+c

n gen[S] = {d}
n kill[S] = Da – {d}

n out[S] = gen[S] � (in[S] – kill[S])

n Da is the set of all definitions in the program 
for variable a

53

Example: S1 ; S2

n gen[S] = gen[S2] � (gen[S1] – kill[S2])
n kill[S] = kill[S2] � (kill[S1] – gen[S2])
n in[S1] = in[S]
n in[S2] = out[S1]
n out[S] = out[S2]

54

Example: if E then S1 else S2 
fi

n gen[S] = gen[S1] � gen[S2] 
n kill[S] = kill[S1] � kill[S2] 
n in[S1] = in[S]
n in[S2] = in[S]

n out[S] = out[S1] � out[S2] 
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Example: while E do S1

n gen[S] = gen[S1]
n kill[S] = kill[S1]

n in[S1] = in[S] � gen[S1] 
n out[S] = out[S1]

56

Then what?
n In essence, this defines a set of rules by 

which we can write down the relationships for 
gen/kill and in/out for a whole (structured) 
program

n This defines a set of equations that then need 
to be solved

n This solution can be complicated
n We don’t know if/when branches are taken
n Loops introduce complications
n Merges introduce complications

n Approaches to solutions: next lecture


