* CSE401: Storage Layout

Larry Snyder
Spring 2003

Slides by Chambers, Eggers, Notkin, Ruzzo, Snyder, and others
©L. Snyder and UW CSE, 1994-2003

Run-time storage layout:
s fOCUs on compilation, not interpretation

n Plan how and where to keep data at run-time
n Representation of

» int, bool, etc.

n arrays, records, etc.

n procedures
n Placement of

n» global variables

» local variables

n parameters

n results

Data layout of scalars
$ Based on machine representation

Integer Use hardware representation
(2, 4, and/or 8 bytes of memory, maybe
aligned)

Bool 1 byte or word

Char 1-2 bytes or word

Pointer Use hardware representation
(2, 4, or 8 bytes, maybe two words if
segmented machine)

n Aggregate scalars together
n Different compilers make different decisions

n Decisions are sometimes machine dependent

» Note that through the discussion of the front-end,
we never mentioned the target machine

» We didn't in interpretation, either
» But now it's going to start to come up constantly

» Necessarily, some of what we will say will be
"typical”, not universal.

m})f records

n Concatenate layout | : record
. b : bool;
of fields i oint:
» Respect alignment m: record
P b : bool;
restrictions : !
" . c : char;
» Respect field order, if end
required by language joooint;
» Why might a end;

language choose to
do this or not do this?

Respect contiguity?

CSE 401, © L Snyder and UW CSE, 1994-2003

n Repeated layout of | Loy [5] of
element type i toint
» Respect alignment of ¢ ¢ char;
element type end;

n How is the length of
the array handled?

Layout of multi-dimensional
$ arrays

n Recursively apply a: a';flr/aﬂ foof
layout rule to record;
subarray first e oo

n This leads to row- end;
major layout

n Alternative: column- a[1][1]
major layout :{;}E}

n Most famous a2)2]
example: FORTRAN a[3)[1]
af3][2]

n Which is better if row-major? col-major?

ararray [1000, 2000] of int;

for i:= 1 to 1000 do
for j:=1 to 2000 do
afi,j] :=0;

for j:=1 to 2000 do
for i:= 1 to 1000 do
afi,j] :=0;

$ Dynamically sized arrays

n Arrays whose length is a: array of
determined at run-time record;

. Different values of the same iint
array type can have different c : char;
lengths end;

n Can store length implicitly
in array

» Where? How much space?
» Dynamically sized arrays
require pointer indirection

» Each variable must have
fixed, statically known size

n PL/1 handled arrays differently, in particular
storage of the length

n It used something called a dope vector, which
was a record consisting of
» A pointer to the array
» The length of the array
» Subscript bounds for each dimension

n Arrays could change locations in memory and
size quite easily

i String representation

n A string ~ an array of characters
» So, can use array layout rule for strings

n Pascal, C strings: statically determined length
» Layout like array with statically determined length

n Other languages: strings have dynamically
determined length

» Layout like array with dynamically determined
length
» Alternative: special end-of-string char (e.g., \ 0)

CSE 401, © L Snyder and UW CSE, 1994-2003

n Given layout of data structure, where in
memory to allocate space for each instance?

n Key issue: what is the lifetime (dynamic
extent) of a variable/data structure?

» Whole execution of program (e.g., global
variables)

- Static allocation

» Execution of a procedure activation (e.g., locals)
- Stack allocation

» Variable (dynamically allocated data)
- Heap allocation

» Code/Read-only data area

stack » Shared across processes
running same program
v n Static data area
» Can start out initialized or
zeroed
*
h n Heap
eap » Can expand upwards through

(e.g. sbrk) system call

static data n Stack
» Expands/contracts downwards
automatically

code/RO data

$ Static allocation

n Statically allocate variables/data structures
with global lifetime
» Machine code
» Compile-time constant scalars, strings, arrays, etc.
» Global variables
» static locals in C, all variables in FORTRAN

n Compiler uses symbolic addresses

n Linker assigns exact address, patches
compiled code

« Stack allocation

n Stack-allocate variables/data structures with
LIFO lifetime

» Data doesn't outlive previously allocated data on
the same stack

n Stack-allocate procedure activation records
n A stack-allocated activation record = a stack frame
» Frame includes formals, locals, temps
» And housekeeping: static link, dynamic link, ...

n Fast to allocate and deallocate storage

n Good memory locality

$ Stack allocation Il

n What about procedure P() {
variables local to e .
d for(int i=0; i<10; i++){
m_est_e scopes doubl e x:
within one
procedure? }
for(int j=0; j<10; j++){
doubl e y;
}
}

i Stack allocation: constraints |

» No references proc foo(x:int): proctype(int):int;
proc bar(y:int):int;
to stack- begi n
allocated data return x +y;
allowed after end bar;
t begi n
rewrns return bar;
n Thisis violated |end foo;
t?y general var f:proctype(int):int;
first-class var g:proctype(int):int;
functions
f 1= foo(3); g := foo(4);
output := f(5); output := g(6);

i Stack allocation: constraints I

» Also violated if proc foo_(x:int): *int;
. var y:int;
pointers to locals begi n
are allowed y 1= x * 2
return &;
end foo;

var w, z:*int;

z
w

= foo(3);
= foo(4);
out put :
out put :

*z;
w,

CSE 401, © L Snyder and UW CSE, 1994-2003

n For data with unknown lifetime
» new mal | oc to allocate space
» del et e/ free/ garbage collection to deallocate
n Heap-allocate activation records of first-class
functions
n Relatively expensive to manage
n Can have dangling reference, storage leaks

» Garbage collection reduces (but may not
eliminate) these classes of errors

n Need space for
» Formals

n Locals
» Various housekeeping data
» Dynamic link (pointer to caller's stack frame)

» Static link (pointer to lexically enclosing stack frame)
» Return address, saved registers, ...

n Dedicate registers to support stack access
» FP - frame pointer: ptr to start of stack frame (fixed)
» SP - stack pointer: ptr to end of stack (can move)

n All data in stack frame is at a fixed, statically
computed offset from the FP

n This makes it easy to generate fast code to
access the data in the stack frame
» And even lexically enclosing stack frames

n Can compute these offsets solely from the
symbol tables

» Based also on the chosen layout approach

21

< %%

] 2

2 852 > 3

= n OT =
<
: 0) =
(] — [-
£ ; ol £ 3 - °
S == 2355 3 =2 -]
=l B < S =Sl &g 9 Z S =z =z 1
2| g E El2 5 o8¢ 3l o n
5| g o S 85 ¢ 2|l8e EER 9
= o 32 = kol
8 o 8 g

SlWelj 4IEIS BUO

FP—
)
sp<
arg 1

n If alocal is in the same stack frame then
t :=*(fp + | ocal _offset)
n If in lexically-enclosing stack frame

t 1= *(fp + static_link_offset)
t :=*(t + local _offset)

n If farther away

t 1= *(fp + static_link_offset)
t *(t + static_link_offset)

to:

*(t + local _offset)

23

CSE 401, © L Snyder and UW CSE, 1994-2003

n ...need to calculate

~ Difference in nesting depth of use and
definition

~ Offset of local in defining stack frame

~ Offsets of static links in intervening frames

$ Calling conventions

n Define responsibilities of caller and callee

» To make sure the stack frame is properly set up
and torn down

n Some things can only be done by the caller
n Other things can only be done by the callee
n Some can be done by either

n So, we need a protocol

25

n Caller n Callee
» Evaluate actual args » Save return address on stack
o Order? . Save caller's frame pointer
» Push onto stack (dynamic link) on stack
. Order? » Save any other registers that
. Alternative: First k might be needed by caller
args in registers » Allocates space for locals,
» Push callee's static link other data
» Orinregister? sp := sp — size_of _locals
Before or after stack - other_data
arguments? » Locals stored in what order?

» Execute call instruction Set up new frame pointer
n Hardwar_e puts return (fp := sp)
address in a register Start executing callee’s code

26

$ PL/O return sequence

n Callee n Caller

n Deallocate space for » Deallocate space

local, other data for callee’s static
sp := sp + size_of _locals .
+ other_data link, args

» Restore caller’s frame nspi=fp
pointer, return address &, Continue execution
other regs, all without in caller after call

losing addresses of stuff
still needed in stack

» Execute return instruction

27

Accessing callee procedures
s Similar to accessing locals

n Call to procedure declared in same scope:
static_link := fp

call p
n Call to procedure in lexically-enclosing scope:
static_link := *(fp + static_link_offset)
call p
n If farther away
t 1= *(fp + static_link_offset)
t 1= *(t + static_link_offset)
;fati c_link :=*(t + static_link_offset)
call p

i Some questions

n Return values?
n Local, variable-sized, arrays

proc P(int n) {
var x array[1l .. n] of int;

var y array[-5 .. 2*n] of array[1 .. n] int;

}
n Max length of dynamic-link chain?
n Max length of static-link chain?

29

CSE 401, © L Snyder and UW CSE, 1994-2003

i Exercise: apply to this example

module M
var x:int;
proc P(y:int);
proc y:int);
var gx:int;
begin R(x+y);end Q
proc R(z:int);

var rx,ry:int;
begin P(x+y+z);end R
begin Q x+y); R(42); P(0); end P;
begi n
X 1= 1;
P(2);
end M

Exercise: symbol table
M x int 0
P proc | -
sl
dl
Ply int
Q proc |-
R proc |-
sl
dl
Rz nt
Qly int X nt
ax int ry nt
sl sl
dl dl

31

$ Exercise: stack frames

x [int [0 [Py [int y [int z Jint
P |proc Q |prog gx |int X nt
sl R __|prog sl ry lint
dl sl dl sl

dl dl

z
y static link

| static link | y static link return address
return address static link return address dynamic link
dynamic link return address dynamic link saved registers
saved registers dynamic link saved registers

saved registers Y
X qx [0

proc P(int a); proc Qint a,int
begi n int c;
i =i +5; begi n
output := a; c = a
out put := a+l; a:=b;
a = a+l; b :=c;
output := a; end;
end;
int i=2: int i=2; j=3;
P(i); output i; QA1)
P(2); output 2;

b);

33

$ Parameter passing

» When passing args, need to support right semantics
n Issue #1: when is argument expression evaluated?
» Before call?
» When first used by callee?
» Atevery use by callee?
n Issue #2: what happens if callee assigns to formal?
» Is this visible to the caller? If so, when?
» What happens with aliasing among arguments and lexically
visible variables?
n Different choices lead to
» Different representations for passed arguments and
» Different code to access formals

n call-by-value

n call-by-sharing

n call-by-reference

n call-by-value-result
n call-by-name

n call-by-need

35

i Call-by-value

n Assignment to var a @ int;
formal doesn't proc foo(x:int,y:int);
affect caller's begi n
value x o=x 4L
n Implementation: ené’ %;o;y T
pass copy of
argument value a:i= 2
n Trivial for scalars foo(a, a);
» Inefficient for output := a;
aggregates(?)

CSE 401, © L Snyder and UW CSE, 1994-2003

n Assignment to formal |var a : int;
changes actual value |proc foo(x:int,y:int);
in caller begi n
» Immediately X =X
» Actual must be Ivalue y =y
» Implementation: pass | end foo;
pointer to actual

+ 1;
+ a;

. Efficient for big data | & = 2)
structures(?) foo(a, a);

. References to formal |Output := a;
must do extra
dereference

37

Big immutable data

i for example, a constant string

n Suppose language has call-by-value
semantics

n But, it's expensive to pass by-value

n Could implement as call-by-reference

» Since you can't assign to the data, you
don't care

» Let the compiler decide?

n Assignment to formal var a @ int;
copies final value back Proc Cintoveint)
to caller on return oo(x:int,y:int);

. begi n
» “copy-in, copy-out” X 1= x + 1
n Implement as call-by- y .=y +a

value with copy back ~ |end foo;

when procedure returns | . . _ .

» More efficient than call- | foo(a, a):
by-reference output := a;
» For scalars?
» For arrays?

39

i Call-by-result

var a : int;
proc foo(x:int,y:int);
begi n
X 1= X
y =y
end foo;

+ 1;
+ a;

a:= 2
foo(a, a);
output := a

n Programmer selects intent

n Compiler decides which mechanism is
more efficient

n Program’s meaning “shouldn’t” depend
on which is chosen

a1

CSE 401, © L Snyder and UW CSE, 1994-2003

& Call-by-name, call-by-need

n Variations on lazy evaluation
» Only evaluate argument expression if and when
needed by callee

n Supports very cool programming tricks
n Somewhat hard to implement efficiently in

traditional compilers

n Thunks
n Largely incompatible with side-effects

» So more common in purely functional languages
like Haskell and Miranda

» But did appear first in Algol-60

42

$ Call-by-name

» Replace each use of a proc square(x);

parameter in the callee, by ibgt : ’r:;
the text of the actual g C=ox v

parameter, but in the end:;
caller's context
n Thisimplies reevaluation of |square(Ali]);
the actual every time the
formal parameter is used
» And evaluation of the actual

might return different values
each time

n How to implement the |int proc sun(j,lo,hi, A);
.

equivalent of a math int j, 1o, hi, A,
A begin
formula like 2, ., Ay s =0
sun(i,0.m A7 | TOL Lo oA
end;
n Pass by-reference or return s;

by-value do not work, |end;
since they can only

pass one element of A
n So: Jensen’s device

43
A classic problem:
$ a procedure to swap two elements
proc swap(int a,int b); nint x, y;
int tenp; X = 2;
a s swap(x, y);
b := tenp;
end; nint j, z[10];
i =2
z[2] = 5;
swap(j. z[i]):
45

n Textual substitution is a simple, clear
semantic model

n There are some useful applications, like
Jensen's device

n Argument expressions are evaluated
lazily

i Call-by-name disadvantages

n Repeatedly evaluating arguments can
be inefficient

n Pass-by-name precludes some standard
procedures from being implemented

n Pass-by-name is difficult to implement

a7

n Call-by-name arguments are compiled to
thunks, special parameter-less procedures

» One gives value of actual, appropriately evaluated
in caller’'s environment

» Other gives I-value, again in caller's environment

n Thunks are passed into the called procedure
and called to evaluate the argument
whenever necessary

CSE 401, © L Snyder and UW CSE, 1994-2003

i Call-by-sharing

n If implicitly reference aggregate data via
pointer (e.g., Java, Lisp, Smalltalk, ML, ...)
then call-by-sharing is call-by-value applied to
implicit pointer

» “call-by-pointer-value”
Efficient, even for big aggregates

Assignments of formal to a different aggregate
don't affect caller (e.g., f := x)

Updates to contents of aggregate visible to caller
immediately (e.g., f[i] := x)

Aliasing/sharing relationships are preserved

49

i Parameters and compiling

n There is an intimate link between the
semantics of a programming language and
the mechanisms used for parameter passing

n Maybe more than other programming
language constructs, the connection is
extremely strong between implementation
and language semantics in this area

» How and when it is decided how big a stack frame
will be?
» It's necessary that the frame always be the same size for
every invocation of a given procedure
» Also, how and when is it decided exactly where in a
stack frame specific data will be?
» Some pieces are decided a priori (such as the return
address)
» Others must be decided during compile-time, such as local
variables (since the number and size can’t be known
beforehand)

n This is all done during the storage allocation phase

51

w PL/0 storage allocation

voi d SynifabScope: : al | ocat eSpace() {
_local sSi ze
_formal sSize

0;
0;
for (int i =0; i < _synbols->length(); i++)

_synbol s->f et ch(i)->al | ocat eSpace(this);

for (int j =0; j < _children->length(); j++)

_children->fetch(j)->allocateSpace();

}

int SyniTabScope:: al | ocateFornal (i nt size) {
int offset = _formalsSize;
_formal sSize += size;
return of fset;

int SyniTabScope:: al | ocateLocal (int size) {
int offset = _|ocal sSize;
_local sSi ze += si ze;
return of fset;

}

voi d Var STE: : al | ocat eSpace(SynTabScope* s) {
int size = _type->size();
_offset = s->al | ocatelLocal (size);

voi d Fornel STE: : al | ocat eSpace(SyniTabScope* s) {
int size = _type->size();
_offset = s->al | ocat eFormal (size);

CSE 401, © L Snyder and UW CSE, 1994-2003

