CSE 401
* Intro Compilers

Final Review

Larry Snyder
Spring 2003

Siides by Chambers, Eggers, Notkin, Ruzzo, Snyder and others 1
© L. Snyder and UW CSE, 1994-2003

n Tradeoffs

n Run-time and compile-time

n Advantages of one over the other
n Basic structure of an interpreter

n Representation and placement of run-
time values

n Generate machine code
n Optimization

n procedures vs activation record/stack
frame

n Scope Vs environment
n symbol table vs stack frame

n variable vs memory/stack/register
location

n lexically enclosing scope vs static link
n caller vs dynamic link

n Representation of data - scalars, aggregates
n memory areas: static, stack (lifo), heap

n layout of stack frame: formals, locals,
links, etc.

n calling conventions — handling registers,
return values, etc.

n parameter passing modes:
call-by-value vs call-by-reference vs ...

5

© L. Snyder and UW CSE, 1994-2003

n Call-by-value, call-by-reference, etc.
n The mechanisms

n The consequences of the mechanisms
on programming language design and
on programs




n Structure of code generation, and n Instruction selection (RISC/CISC)
benefits of that structure » Register allocation

n Intermediate vs. target code generation . .
(temps, machine (in)dependence, ...) n Impact of basic architectural features

n 3-address code: what and why
n Generation of IR from AST:

I- vs r-value, exprs, assign, arrays, ...
n Short circuit code

n Deduce as much as possible at compile time » Distinguish from symbol tables
about run time bindings, values, control flow,... .

. Useit to: n What goes in them
» Simplify/specialize unnecessarily general code n Static/dynamic links

» Reorder code
» Exploit target machine
n Scope: n Examples
» Peephole
n Local
» Global (intra-procedural)
n Inter-procedural

» What they are, why they are, and how they
are managed

n Analyses
» live variable analysis

n Control and data flow graph
representations
» What and why

n lterative dataflow analysis

© L. Snyder and UW CSE, 1994-2003



