CSE401:

* Compilers vs Interpreters

Larry Snyder
Autumn 2003

Slides by Chambers, Eggers, Notkin, Ruzzo, Snyder and others
© L. Snyder and UW CSE, 1994-2003

Now

n ...what to do now that we have this wonderful
AST+ST representation
n We'll look mostly at interpreting it or compiling
it
» But you could also analyze it for program
properties
» Or you could “unparse” it to display aspects of the
program on the screen for users

Analysis

n What kinds of analyses could we perform on
the AST+ST representation?

n The representation is of a complete and legal
program in the source language

n Ex: ensure that all variables are initialized
before they are used

n Some languages define this as part of their
semantic checks, but many do not

n What are some other example analyses?

Implementing a language

n If we want to execute the program from this
representation, we have two basic choices
n Interpret it
» Compile it (and then run it)

n Tradeoffs between this include

» Time until the program can be executed
(turnaround time)

» Speed of executing the program
n Simplicity of the implementation
n Flexibility of the implementation

Interpreters

n Essentially, an interpreter defines an EVAL
loop that executes AST nodes

n To do this, we create data structures to
represent the run-time program state
n Values manipulated by the program

» An activation record for each called procedure
» Environment to store local variable bindings
» Pointer to calling activation record (dynamic link)
. Pointer to lexically-enclosing activation record (static link)

Pros and cons of
interpretation

n Pros
» Simple conceptually, easy to implement
» Fast turnaround time
» Good programming environments
» Easy to support fancy language features
n Con: slow to execute
» Data structure for value vs. direct value
n Variable lookup vs. registers or direct access
» EVAL overhead vs. direct machine instructions
» No optimizations across AST nodes

Compilation

n Divide the interpreter’s work into two parts
n Compile-time
» Run-time

n Compile-time does preprocessing

n Perform some computations at compile-time only
once

n Produce an equivalent program that gets run
many times
n Only advantage over interpreters: faster
running programs

Compile-time processing

n Decide on representation and placement of
run-time values

Registers

Format of stack frames

Global memory

Format of in-memory data structures (e.qg.,

records, arrays)

n Generate machine code for basic operations
n Like interpreting, but instead generate code to be

executed later

n Do optimization across instructions if desired

8

s

s

s

s

Compile-time vs. run-time

Compile-time Run-time
Procedure Activation record/
stack frame
Scope, symbol table Environment Details
(content of stack frames) <:| ae
Variable Memory location, register coming

Lexically-enclosed scope | Static link

Calling procedure Dynamic link

An interpreter for PL/O

n

Data structure to represent ;Lgfichal ue {
run-time values: Val ue o
hierarchy virtual int intVvalue(){

 Also useful for
resol ve_const ant
3

» Value-level analogue of Type ol ass I ntegerVal e : public
Data structure to store Val ue (
val ues for each variable public:

» ActivationRecord containing bool i sl nteger()
ActivationRecordEntries { return true; }

3 int intVvalue()
» Run-time analogue of { return _value; }

Synbol Tabl eScope void print()
rint(Q) .
eval method per AST class Cprintf(foa, _value): }

virtual bool bool Val ue(){
2}

10

Example eval

I
Val ue* UnOp: : eval (SynifabScope* s, ActivationRecord* ar)
Val ue* arg = _expr->eval (s, ar);

switch(_op) {
case M NUS:
return new | ntegerVal ue(- arg->intValue());

new Bool eanVal ue(arg->i ntValue()%® == 1);
defaul t:
Pl zer o- >f at al ("unexpected UNOP");
}

11

Activation records

n Each call of a procedure allocates an
activation record (instance of
Activati onRecor d)
» Basically, equivalent to a stack frame and
everything associated with it
n An activation record primarily stores
» Mapping from names to Vval ues for each formal
and local variable in that scope (environment)
» Don't store values of constants, since they are in the
symbol table
n Lexically enclosing activation record (static link)

» Why needed? To find values of non-local variables
12

n There must be a logical link from the
activation of the calling procedure to the
called procedure
n Why? So we can handle returns

n In PL/O, this link is implicit in the call structure
of the PL/O eval functions
n So, when the source program returns from a

procedure, the associated PL/O eval function
terminates and returns to the caller

n Some interpreters represent this link explicitly
» And we will definitely do this in the compiler itself

13

Activation records &
symbol tables

n For each procedure in a program
» Exactly one symbol table, storing types of names
» Possibly many activation records, one per call,

each storing values of names

n For recursive procedures there can be
several activation records for the same
procedure on the stack simultaneously

n All activation records for a procedure have
the same "shape," which is described by the
single, shared symbol table

modul e M
var res: int;
procedure
fact(n:int);
begi n
if n>0 then
res :=res * n;
fact(n-1);
end;
end fact;
begi n
res :=1;
fact (input);
output := res;
end M

n So we'll repeat in here (interpreting)
n And again in compiling

n We're looking at how to take the AST+ST
representation and execute it interpretively

n We looked at the basic idea of recursively
applying eval to the AST

n We looked at activation records and their
relationship to symbol tables

We briefly discussed static links
» And even more briefly dynamic links

E

17

n Connect each modul e M
activation record to var x:int;
its lexically enclosing | Proc P(y:int);
activation record proc Qy:int):
« This represents the begin R(x+y);end Q
block structure of the proc R(z:int);
program b_egl n P(x+y+z);end R;
n When calling a begi gegu n Qxty);end B
procedure, what g Sz 1

activation record to P(2);
use for the lexically |end M
enclosing activation

record?

Nested procedure semantics:
C

n Disallow nesting of procedures

n Allow procedures to be passed as
regular values, but without referencing
variables in the lexically enclosing
scope

= Lexically enclosing activation record is
always the global scope

19

Nested procedure semantics:
PL/O

n Allow nesting of procedures

n Allow references to variables of lexically
enclosing procedures

n Don't allow procedures to be passed
around

= Caller can always compute callee’s
lexically enclosing activation record

Nested procedure semantics:
Pascal

n Allow nesting of procedures

n Allow references to variables of lexically
enclosing procedures

n Allow procedures to be passed down
but not to be returned

= Represent procedure value as a pair of
a procedure and an activation record
(closure)

21

Example: Pascal semantics §i
rmodul e mai n(){
procedure P(){
int x;
procedure nyconp(..){
if(x==42) then ...else ...;
}

% iz a2 | want quicksort to
call quicksort(..,nyconp); <«— use rr_ycorrpx:Az()
even if somebody

} changes x first!

call P();
}

Nested procedure semantics:

ML, Sctl_gm_e, Smalltalk

n Fully first-class nestable functions

n Procedures can be returned from their
lexically enclosing scope

- Put closures and environments in the
heap

23

Example:
ML/scheme/... semantics &

nmodul e mai n() {
procedure P(){
int x;
procedure nyconp(..){
if(x==42) then ...else ...;
}

X = a2 | want quicksort to

return
Nui cksort (.., myconp); «— use nyconpx:42()

even if somebody
} changes x first!

call the fn that P() returns; <— And even after
} P() returns!

Example eval method for
PL/O (some error checking omitted)

Val ue* VarRef:: eval (SynTabScope* s, ActivationRecord* ar)
{
SynifabEnt ry* ste = s->| ookup(_ident);
if (ste == NULL) {Plzero->fatal.);}
if (ste->isConstant()) {
return ste->val ue();

}

if (ste->isVariable()) {
ActivationRecordEntry* are = ar->| ookup(_ident);
Val ue* value = are->val ue();
return val ue;

}
Pl zero->fatal ("referencing identifier that's

not a constant or variable");
return NULL;

25

Another eval method for PL/O

some parts omitted

|
Val ue* Bi nOp: : eval (SynTabScope* s, ActivationRecord* ar) {
Val ue* left = _left->eval (s, ar);
Val ue* right = _right->eval (s, ar);
switch(_op) {
case PLUS: return new | ntegerVal ue(left->intValue() +
right->intValue());

case DI VI DE:

if (right->intvalue() == 0) {
Pl zero->eval Error ("di vide by zero", line);

return new I ntegerVal ue(left->intValue() /
ri ght->intValue());
case LSS: return new Bool eanVal ue(l ef t->i ntVal ue() <
right->intValue());
-}

eval Assignment Statement

voi d AssignStnt::eval (SynTabScope* s,
ActivationRecord* ar) {

Val ue*& | hs = _|val ue->eval _address(s, ar);
Val ue* rhs = _expr->eval (s, ar);
Ihs = rhs;

}

27

eval while Statement

voi d Wil eStnt::eval (SyniTabScope* s,
ActivationRecord* ar) {

for (53) {
Val ue* test = _test->eval (s, ar);
if (test->bool Value()) {
for (int i =0; i < _loop_stnts->length(); i++) {
_loop_stnts->fetch(i)->eval (s, ar);
} else {
br eak;
}

}
}

Note: recursion

n By now you should understand that recursion
is much much more than a cool way to write
tiny little procedures in early programming
language classes

n If you don't really see this yet, | have a
special assignment for you

n Rewrite either the parser or the interpreter without
using recursion
» Oh, you can do it, for sure...

29

eval declarations

void VarDecl :: eval (ActivationRecord* ar) {
for (int i =0; i < _items->length(); i++) {
_itenms->fetch(i)->eval (ar);
}
}

voi d VarDecl | tem:eval (ActivationRecord* ar) {
ActivationRecordEntry* varActivationRecordEntry =
new Var Acti vat i onRecor dEnt ry(_nane, undefined);
ar->ent er (var Acti vati onRecordEntry);

}

eval constant declarations

voi d Const Decl :: eval (ActivationRecord* ar) {
--OK, what goes here?

}

31

eval procedure calls

void Call Stnt::eval (SyniTabScope* s, ActivationRecord* ar)
{

Val ueArray* argVal ues = new Val ueArray;

for (int i =0; i < _args->length(); i++) {
Val ue* argValue = _args->fetch(i)->eval (s, ar);
ar gVal ues- >add(ar gVval ue) ;

}
SynifabEntry* ste = s->| ookup(_ident);
if (ste == NULL) {Plzero->fatal.);}
Acti vationRecord* encl osi ngAR;
ActivationRecordEntry* are =

ar - >l ookup(_i dent, encl osi ngAR);
if (are == NULL) {Plzero->fatal.);}
ProcDecl * callee = are->procedure();
cal | ee->cal | (argVal ues, encl osingAR);

eval procedure calls I

voi d ProcDecl ::cal |l (Val ueArray* argVal ues,
Acti vati onRecor d*
encl osi ngAR) {
ActivationRecord* calleeAR =
new ActivationRecord(encl osi ngAR) ;

for (int i =0; i < _formals->length(); i++) {
Formal Decl * fornal = _formals->fetch(i);
Val ue* actual = argVal ues->fetch(i);

f or mal - >bi nd(actual, calleeAR);

_bl ock->eval (cal | eeAR);

33

OK, that's most of
interpretation

n Next
» memory layout (data representations, etc.)
n stack layout, etc.

n Then back to how we compile activation
records, etc.

n And generate code, of course

