
10/15/2003

CSE401: Introduction to
Compiler Construction

Larry Snyder
Autumn 2003

Slides by Chambers, Eggers, Notkin, Ruzzo, Snyder and
others

© L Snyder & UW CSE 1994-2003

Today’s objectives

n Administrative details
n Define compilers and why we study them

n Define the high-level structure of compilers
n Associate specific tasks, theories, and

technologies with achieving the different
structural elements of a compiler
n And build some initial intuition about why these

are needed

Administrative Details

n Course Web:

http://www.cs.washington.edu/401
n Grading

n Homeworks ~20%
n Project ~40%
n Midterm ~15%
n Final ~25%

n Project: toy compiler à an (almost) real one.
Staged. Optional teams of 2-3 people.

What is a compiler?

Compiler

Executable CodeSource Code

n A software tool that translates
n a program in source code form to
n an equivalent program in an executable (target) form

n Converts from a form good for people to a form good
for computers

Examples

n Source languages
n Java
n C
n C++
n LISP
n ML
n COBOL
n …

n Target architectures
n MIPS
n x86
n SPARC
n Alpha
n …
n C

Why study compilers?

10/15/2003

CSE401’s
project-oriented approach

n Start with a compiler for PL/0, written in C++
n We define additional language features

n Such as comments, arrays, call-by-reference
parameters, result-returning procedures, for loops,
etc.

n You modify the compiler to translate the
extended PL/0 language
n Project completed in well-defined stages

More on the project
n Strongly

recommended that
you work in two-
person teams for the
quarter

n Grading based on
n correctness
n clarity of design and

implementation
n quality of testing

n Provides experience
with object-oriented
design and with C++

n Provides experience
with working in a
team

What's hard about compiling

n I will present a small program to you,
character by character

n Identify problems that you can see that you
will encounter in compiling this program

n Here’s an example problem
n When we see a character ’ 1’ followed by a

character ’ 7’ , we have to convert it to the integer
17.

1. i

2. n

3. t

4. �

5. i

6. ;

7. �

8. i

9. :

10. =

11. 1

12. 7

13. �

14. ;

15. p

16. r

17. i

18. n

19. t

20. (

21. i

22. *

23. i

24. +

25. 2

26.)

27. ;

• � is the
space
character

• This is not a
PL/0
program!

ExampleExample

Structure of compilers
n A common compiler structure has been

defined
n Years and years of deep, difficult research

intermixed with building of thousands of compilers

n Actual compilers often differ from this
prototype
n Primary differences are the ordering and clarity

with which the pieces are actually separated
n But the model is still extremely useful

n You will see the structure — to a large degree
— in the PL/0 compiler

������
�����	

Stream
of characters

Sequence
of tokens

Lexical analysis

Abstract Syntax
Tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Code generation

Executable
code

Prototype compiler structure
�	����

�����	

10/15/2003

Front- and back-end .

n These parts are often lumped into two
categories

n The front-end
n Focuses on (repeated) analysis
n Determines what the program is

n The back-end
n Focuses on synthesis
n Produces target program equivalent to source

program

������

�����	

stream
of characters

sequence
of tokens

Lexical analysis

abstract syntax
tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Code generation

Executable
code

�	����

�����	

An example compilation
modul e mai n;

var x : i nt , r esul t : i nt ;
pr ocedur e squar e(n: i nt) ;

begi n

r esul t : = n* n;

end squar e;

begi n

x : = i nput ;

whi l e x <> 0 do
squar e(x) ;

out put : = r esul t ;

x : = i nput ;

end;

end mai n.

n A real PL/0 program

n We’ll step through
n Lexical analysis

n Syntactic analysis

n Semantic analysis

n Storage layout

n Code generation

Lexical analysis
(AKA scanning and tokenizing)

n Read in characters and
clump them into tokens
n Also strip out white

space and comments

n Specify tokens with
regular expressions

n Use finite state
machines to scan

n Remember the
connection between
regular expressions
and finite state
machines

I dent : : = Let t er Al phaNum*

I nt eger : : = Di gi t +

Al phaNum : : = Let t er | Di gi t

Let t er : : = ’ a’ | …| ’ z ’ | …|

’ A’ | …| ’ Z’

Di gi t : : = ’ 0’ | …| ’ 9’

E.g.:
whi l e x <> 0 do
keywd id op int keywd

Syntactic analysis
(AKA parsing)

n Turn token stream into tree
based on the program’s
syntactic structure

n Define syntax using context
free grammar (CFG)

n EBNF is a common notation for
defining concrete syntax
n Cares about semi-colons,

parens, and such

n Parser usually constructs AST
representing abstract syntax
n Cares about statement

structures, precedence and such

St mt : : = Ast mt | I f St mt | …

Ast mt : : = Lval ue : = Expr ;

Lval ue : : = I d

I f St mt : : = i f Test t hen St mt

[el se St mt] ;

Test : : = Expr = Expr |

Expr < Expr | …

Expr : : = Ter m + Ter m |

Ter m – Ter m | Ter m

Ter m : : = Fact or * Fact or |

… | Fact or

Fact or : : = - Fact or | I d |
I nt | (Expr)

Syntactic analysis example

St mt : : = Ast mt | I f St mt | …

Ast mt : : = Lval ue : = Expr ;

Lval ue : : = I d

I f St mt : : = i f Test t hen St mt

[el se St mt] ;

Test : : = Expr = Expr |

Expr < Expr | …

Expr : : = Ter m + Ter m |

Ter m – Ter m | Ter m

Ter m : : = Fact or * Fact or |

… | Fact or

Fact or : : = - Fact or | I d |
I nt | (Expr)

I d : = I d * I d ;

r esul t : = n * n ;

Fact

St mt

Ast mt

Ter m

Expr

Fact

Lval ue

Semantic analysis
(Name resolution and type checking)

n Given AST
n figure out what declaration each name refers to
n perform static consistency checks

n Key data structure: symbol table
n maps names to information about name derived from

declaration

n Semantic analysis steps
n Process each scope, top down
n Process declarations in each scope into symbol table for

scope
n Process body of each scope in context of symbol table

10/15/2003

Semantic analysis example
int x;

int y(void);
int main(void) {

double x,y;
x = x + 5;
printf("x is %d",x);
x = y();
return 1/2 ;

}

n Which var with which
decl?

n What type?
n Operators legal on

those types?
n Coercion?
n Function arg & return

types too?
n Overloading?
n Goto/case labels

unique?

Storage layout
n Given symbol table, determine how and where

variables will be stored at runtime
n What representation is used for each kind of data?
n How much space does each variable require?

n In what kind of memory should it be placed?
n static, global memory

n stack memory

n heap memory

n Where in memory should it be placed?
n e.g., what stack offset?

Storage layout example
int x;

int y(void);
int main(void) {

double x,y;
x = x + 5;
printf("x is %d",x);
x = y();
return 1/2 ;

}

n Outer x: 4 bytes,
static

n Inner x,y: 8 bytes
each on stack

n What address?
n How does printf find

its parameters?
n How does main

return a value?

Code generation
n Given annotated AST and symbol table,

produce target code
n Often done as three steps

n Produce machine-independent low-level
representation of the program
(intermediate representation or IR)

n Perform machine-independent optimizations
(optional)

n Translate IR into machine-specific target
instructions

n Instruction selection
n Register allocation

Codegen example
x = x + y; t42 ß x lw $2, 48($fp)

t43 ß y lw $3, 52($fp)
t44 ß t42 + t43 add $2, $2, $3
x ß t44 sw $2, 48($fp)

x = x * 2; t45 ß x lw $2, 48($fp)

t46 ß 2 li $3, 2
t47 ß t45 * t46 mul $2, $2, $3
x ß t47 sw $2, 48($fp)

x += y; t48 ß x lw $2, 48($fp)

t49 ß y lw $3, 52($fp)
t50 ß t48 + t49 add $2, $2, $3
x ß t50 sw $2, 48($fp)

Does this structure work well?

n FORTRAN I Compiler (circa 1954-56)
n 18 person years

n PL/0 Compiler
n By the end of the quarter, you'll have a

working compiler that's way better than
FORTRAN I in most respects
(key exception: optimization)

10/15/2003

Compilers vs. interpreters
n Compilers implement languages by

translation
n Interpreters implement languages directly
n Note: the line is not always crystal-clear
n Compilers and interpreters have tradeoffs

n Execution speed of program
n Start-up overhead, turn-around time
n Ease of implementation
n Programming environment facilities
n Conceptual clarity

Compiler engineering issues

n Portability
n Ideal is multiple front-ends and multiple back-ends

with a shared intermediate language

n Sequencing phases of compilation
n Stream-based vs. syntax-directed

n Multiple, separate passes vs. fewer,
integrated passes

n How to avoid compiler bugs?

Objectives: next lecture
n Define overall theory and practical structure

of lexical analysis
n Briefly recap regular expressions, finite state

machines, and their relationship
n Even briefer recap of the language hierarchy

n Show how to define tokens with regular
expressions

n Show how to leverage this style of token
definition in implementing a lexer

