! CSE401: Optimization

Larry Ruzzo
Spring 2002

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2002

Prototype compiler structure

Lexical analysis Target code generation

Syntactic analysis Optimization

Intermediate code

Semantic analysis generation

Storage
layout 2

= Optimization

= Identify inefficiencies in target or
intermediate code

= Replace with equivalent but “better”
seguences

= “Optimize” is a lie.
“Usually improve” is more honest.

t1 :=*(fp + ioffset) i

t2 :=t1*4

Xamp|e 13 :=fp+12
t4 :=*(t3 + aoffset) // a[i]

. t5 =2

= ali] + b[2]; 6 =15+ 4

c[i] :=x =5 t7 :=fp+16
18 := *(t7 + boffset) //b[2]

19 :=t4 +18

*(fp + xoffset) :=t9 IIx:=..
110 := *(fp + xoffset) // x
t11:=5

112 :=t10 - t11

113 := *(fp + ioffset) i
114 :=t3*4

115 :=fp + t14

*(t15 + coffset) :=t15 // c[i] := ...

Kinds of optimizations

Increasing scope,

opportunity, and
complexity

= Scope of analysis is central to what
optimizations can be performed. A larger
scope may expose better optimizations, but is
more complex
= Peephole: ook at adjacent instructions

= Local: look at straight-line sequences of
instructions

= Global (intraprocedural): look at whole procedure
= Interprocedural: 100k across procedures

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002

& Peephole

= After codegen, look at a few adjacent
instructions
= Try to replace them with something better
= If you have
sw $8, 12($f p)
Iw $12, 12($f p)
= You can replace it with

sw $8, 12($f p)
nv $12, $8

Peephole examples: 68k

If you have Replace it with

mov rl,-(sp)

sub sp, 4, sp
mov r1, 0(sp) }

nmov 12(fp),rl
add r1,1,r1

inc 12(fp)
nmov r1,12(fp)

Peephole optimization of jumps

= Eliminate if a<bthen if (a=b)goto 1
= Jumps to jumps if ¢c <dthen if (c2d)goto 2
= Conditional # do not hing #do not hi ng

branch over el se goto 3
unconditional stnt1; 2:stntl
branch end; 3:

= “Adjacent el se goto 4

instructions” st 2; 1istm2
end; 4:

means

“adjacent in

control flow”

How to do peephole opts

= Could be done at IR and/or target level

= Catalog of specific code rewrite
templates

= Scan code with moving window looking
for matches

Peephole summary

= You could consider peephole
optimization as increasing the
sophistication of instruction selection

Relatively easy to do

Relatively easy to extend

Relatively easy to ensure correctness
Relatively high payoff

by peephole or codegen

g Algebraic simplifications

= “constant folding” and “strength
reduction” are common names for this
kind of optimization

=z :=3+4
=z :=XxX +0
z:=x*1
= Z =X * 2
z:=x*8
z:=x1 8
=« float x,y;
z = (x+y) -V

1

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002

Local optimization

= Analysis and optimizations within a basic
block

p

= Local optimizations are more powerful than
peephole (e.g., block may be longer than peephole window)
= Not too hard to implement

= Can be machine-independent, if done on
intermediate code

Local constant propagation
i (aka "constant folding")

= If a constant is assigned to a variable,
replace downstream uses of the
variable with the constant

= If all operands are const, replace with
result

= May enable further constant folding

13

Local dead assignment elimination

= If the left hand side of an assignment is
never read again before being
overwritten, then remove the
assignment

= This sometimes happens while cleaning
up from other optimizations (as with
many of the optimizations we consider)

15

yi=x"3;

X := input; ﬁ

Intermediate code after
constant propagation

const count : int = 10; t1 =10
2 =5
X :=count * 5; t3 :=tl*t2
yi=x"3; X =t3

4 =x

t5 :=3

16 := exp(t4,t5)

y =t6

14
const count : int = 10; x =50
16 := exp(50,3)

y =t6
X 1= count * 5; X = input()

= Avoid repeating the same calculation

= Requires keeping track of available
expressions

17

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002

CS

E example: |... a[] + bfi]...

*(fp + ioffset)
tl1* 4
fp+t2
*(t3 + aof fset)

*(fp + ioffset)
ts5 * 4
fp+1t6

1= *(t7 + boffset)

1= t4 +t8

= Intraprocedural optimizations
= Code motion
= Loop induction variable elimination
= Global register allocation

= Interprocedural optimizations
= Inlining

= After that...how to implement these
optimizations

= Oother kinds of optimizations, beyond the
scope of this class, e.g. dynamic compilation

19

Intraprocedural optimizations

= Enlarge scope of analysis to entire procedure
= Provides more opportunities for optimization
= Have to deal with branches, merges and loops

= Can do constant propagation, common
subexpression elimination, etc. at this level

= Can do new things, too, like
loop optimizations

= Optimizing compilers usually work at this level

+ Co0de motion

= Goal: move loop-invariant calculations
out of loops

= Can do this at the source or
intermediate code level

for! t=1to 10 do_
afi] :=ali] + b[j];
z = z + 10000

end

21

*(fp+ioffset) :=1
_lo:

if *(fp+tioffset) > 10 goto _I1
tl := *(fp+joffset)
t2 t1*4

t3 fp+t 2

t4 *(t3+bof f set)
t5 *(fp+ioffset)
t6 = t5*4

t7 1= fp+t6
*(t7+aoffset) :=t4
t8 := *(fp+ioffset)

afi] :=b[j];
end

i Loop induction variable elimination

= For-loop index is an induction variable
= Incremented each time through the loop
= Offsets, pointers calculated from it

= If used only to index arrays, can rewrite with
pointers
= Compute initial offsets, pointers before loop
= Increment offsets, pointers each time around loop
= No expensive scaling in the loop

23

t9 1= t8+1
*(fp+ioffset) :=1t9
goto _IO
11:
- 2
Example
for p:= &[1] to &a[10] do
Pi=p ot X
end

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002

= Clobal register allocation

. TI’ytO allocate local proc f(n:int,x:int):int;

. . var sum int, i:int;

variables to registers pegin
’ sum: = X,
= If two locals don't for i 21 ton do

overlap, then give sum:= sum+ i;
them the same end

. return sum
register end 1

Try to allocate most
frequently used
variables to registers
first

25

=a Register allocation by coloring

= As before, IR gen as if infinite regs avail
= Build interference graph:

X = a+bh;
y 1= b*2;
z 1= x/3;
a:=y-2;

= Colorable with few colors (regs)?
=NP-hard, but ...

= If not, pick a node & generate spill code

i Interprocedural optimizations

= What happens if we expand the scope of the
optimizer to include procedures calling each
other
= In the broadest scope, this is optimization of the

program as a whole

= We can do local, intraprocedural
optimizations at a bigger scope
= For example, constant propagation

= But we can also do entirely new
optimizations, such as inlining

27

. |Nterprocedural opt: Issues

procedure P() {

s
X: int; = Q0
X = 10 = Q(x by value)

§ ' — | = Q(x by reference)
‘q)i = Q(const x by reference)
X: = X+1;

= Q(), but Q declared in P
if x == 11 then |. ..

Replace procedure call with the body of the called

procedure
const pi:real := 3.14159; const pizreal := 3.14159;
proc area(rad:int):int; proc area(rad:int):int;
begi n begin

return pi*(rad”2); return pi*(rad"2);
end; end;
r:i=5; r=5;
output := area(r); output := pi*(r2);

29

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002

few answers

i Questions about inlining:

= How to decide where the payoff is
sufficient to inline?
= The real decision depends on dynamic
information about frequency of calls
= In most cases, inlining causes the code
size to increase; when is this
acceptable?

= Others?

= Optimization and debugging = Summary of optimization

= Larger scope of analysis yields better results
= Most of today’s optimizing compilers work at the

= Debugging optimized code is often hard

= For example, what if:) ! A
o intraprocedural level, with some doing some work at the
= Source code statements have been reordered? interprocedural level
= Source code variables have been eliminated? = Optimizations are usually organized as collections of
= Code is inlined? passes

= The presence of optimizations may make other parts

= In general, the more optimization there is, the
of the compiler (e.g., code gen) easier to write

more complex the back-mapping is from the

target code to the source code ... which can = E.g., use a simple instruction selection algorithm, knowing

confuse a programmer that the optimizer can, in essence, act to improve these
instruction selections

31

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2002

