Objectives: parsing lectures

Understand:
- Theory and practice of parsing
- Underlying language theory (CFGs, ...)
- Top-down parsing (and be able to do it)
- Bottom-up parsing (time permitting)
- Today's focus: grammars and ambiguity

Parsing

- Abstract Syntax Tree (AST)
 - Captures hierarchical structure of the program
 - Is the primary representation of the program used by the rest of the compiler
 - It gets augmented and annotated, but the basic structure of the AST is used throughout

Parsing: two jobs

- Is the program syntactically correct?
 - $a := 3 \cdot (5 + 4)$; if $x > y$ then $m := a$;
 - $a := 3 \cdot / 4$; if $x < y$ else $m := a$
- If so, build the corresponding AST

Context-free grammars (CFGs)

- For lexing, we used regular expressions as the underlying notation
- For parsing, we use context-free grammars in much the same way
 - Regular expressions are not powerful enough
 - Intuitively, can't express balance/nesting (if/then, parens)
 - More general grammars are more powerful than we need
 - Well, we could use more power, but instead we delay some checking to semantic analysis instead of doing all the analysis based on the (general, but slow) grammar

CFG terminology

- Terminals: alphabet, or set of legal tokens
- Nonterminals: represent abstract syntax units
- Productions: rules defining nonterminals in terms of a finite sequence of terminals and nonterminals
- Start symbol: root symbol defining the language

Program ::= Start
Start ::= if Expr then Stmt else Stmt end
Stmt ::= while Expr do Stmt end
EBNF description of PL/0

Program ::= module Id ; Block Id .
Block ::= DeclList begin StmtList end
DeclList ::= { Decl ; }
Decl ::= ConstDecl | Procl | VarDecl
ConstDecl ::= const ConstDeclItem { , ConstDeclItem }
ConstDeclItem ::= Id : Type = ConstExpr
ConstExpr ::= Id | Integer
VarDecl ::= var VarDeclItem { , VarDeclItem }
VarDeclItem ::= Id : Type

Exercise: produce a syntax tree for squares.

```
module main;
var x : int, squareret : int;
procedure square(n : int);
beginsquareret := n * n;
end

begin
x := input;
while x <> 0 do
  square(x);
  output := squareret;
  x := input;
end;
end main.
```

Derivations and parsing

- Derivation
 - A sequence of expansion steps,
 - Beginning with the start symbol,
 - Leading to a string of terminals
- Parsing: inverse of derivation
 - Given a target string of terminals,
 - Recover nonterminals/productions representing structure

Parse trees

- We represent derivations and parses as parse trees
- Concrete syntax tree
 - Exact reflection of the grammar
- Abstract syntax tree
 - Simplified version, reflecting key structural information
 - E.g., omit superfluous punctuation & keywords
Concrete Syntax Tree

Abstract syntax trees

Ex: An expression grammar

Ambiguity

Another famous ambiguity: dangling else

Resolving ambiguity: #1

Concrete syntax tree Abstract syntax tree

a := 3 * (4+5)

E ::= E Op E | - E | (E) | int
Op ::= + | - | * | /

Using this grammar, find parse trees for:
3 * 5
3 + 4 * 5

Some grammars are ambiguous
- Different parse trees with the same final string
- (Some languages are ambiguous, with no possible non-ambiguous grammar; but we avoid them)
- The structure of the parse tree captures some of the meaning of a program
- Ambiguity is bad since it implies multiple possible meanings for the same program
- Consider the example on the previous slide

Stmt ::= ... if Expr then Stmt ... if Expr then Stmt else Stmt
if e1 then if e2 then s1 else s2

To which then does the else belong?
- The compiler isn’t going to be confused
- However, if the compiler chooses a meaning different from what the programmer intended, it could get ugly
- Any ideas for overcoming this problem?

Add a meta-rule
- For instance, “else associates with the closest previous unmatched if”
- This works and keeps the original grammar intact
- But it’s ad hoc and informal
Resolving ambiguity: #2

Rewrite the grammar to resolve it explicitly

\[
\text{Stmt} \quad ::= \quad \text{MatchedStmt} \mid \text{UnmatchedStmt} \\
\text{MatchedStmt} \quad ::= \quad \text{if Expr then MatchedStmt} \mid \text{if Expr then Stmt} \\
\text{UnmatchedStmt} \quad ::= \quad \text{if Expr then MatchedStmt} \mid \text{if Expr then Stmt} \\
\]

- Formal, no additional meta-rules
- Somewhat more obscure grammar

Resolving ambiguity: #3

Redesign the programming language to remove the ambiguity

\[
\text{Stmt} \quad ::= \quad \text{if Expr then Stmt end} \mid \text{if Expr then Stmt else Stmt end} \\
\]

- Formal, clear, elegant
- Allows StmtList in then and else branch, without adding begin/end
- Extra end required for every if statement

What about that expression grammar?

How to resolve its ambiguity?

- Option #1: add meta-rules for precedence and associativity
- Option #2: modify the grammar to explicitly resolve the ambiguity
- Option #3: redefine the language

Option #1: add meta-rules

Add meta-rules for precedence and associativity

\[
E \quad ::= \quad E+E \mid E*E \mid E/E \mid E^E \mid (E) \mid -E \mid \ldots \\
= +, -, *, /, \text{unary}, ^, \ldots \text{etc.}
\]

- Simple, intuitive
- But not all parsers can support this
- yacc does

Option #2: new BNF

Create a nonterminal for each precedence level

\[
E \quad ::= \quad E+T \\
T \quad ::= \quad T+F \\
F \quad ::= \quad \text{id} \mid (E) \\
\]

- Expr is the lowest precedence nonterminal
- Each nonterminal can be rewritten with higher precedence operator
- Highest precedence operator includes atomic expressions
- At each precedence level use
 - Left recursion for left-associative operators
 - Right recursion for right-associative operators
 - No recursion for non-associative operators
Option #2: example

\[w + x + y \cdot z \]

Option #3: New language

- Require parens
 - E.g., in APL all exprs evaluated left-to-right unless parenthesized
- Forbid parens
 - E.g.: RPN calculators

Designing a grammar: on what basis?

- Accuracy
- Readability, clarity
- Unambiguity
- Limitations of CFGs
- Similarity to desired AST structure
- Ability to be parsed by a particular parsing algorithm
 - Top-down parser \(\Rightarrow \) LL(k) grammar
 - Bottom-up parser \(\Rightarrow \) LR(k) grammar

Parsing algorithms

- Given input (sequence of tokens) and grammar, how do we find an AST that represents the structure of the input with respect to that grammar?
- Two basic kinds of algorithms
 - Top-down: expand from grammar’s start symbol until a legal program is produced
 - Bottom-up: create sub-trees that are merged into larger sub-trees, finally leading to the start symbol

Top-down parsing

- Build AST from top (start symbol) to leaves (terminals)
 - Represents a leftmost derivation (e.g., always expand leftmost non-terminal)
- Basic issue: when replacing a non-terminal with a right-hand side (rhs), which rhs should you use?
- Basic solution: Look at next input tokens

Predictive parser

- A top-down parser that can select the correct rhs looking at the next \(k \) tokens (lookahead)
- Efficient
 - No backtracking is needed
 - Linear time to parse
- Implementation
 - Table-driven: pushdown automaton (PDA) — like table-driven FSA plus stack for recursive FSA calls
 - Recursive-descent parser [used in PL/0]
 - Each non-terminal parsed by a procedure
 - Call other procedures to parse sub-non-terminals, recursively
LL(k), LR(k), …?

- These parsers have generally snazzy names.
- The simpler ones look like the ones in the title of this slide.
- The first L means “process tokens left to right.”
- The second letter means “produce a (Right / Left)most derivation.”
- Leftmost == top-down
- Rightmost == bottom-up
- The k means “k tokens of lookahead.”
- We won’t discuss LALR(k), SLR, and lots more parsing algorithms.

LL(k) grammars

- It’s easy to construct a predictive parser if a grammar is LL(k).
- Left-to-right scan on input.
- Leftmost derivation, k tokens of lookahead.
- Restrictions include
 - Unambiguous.
 - No common prefixes of length > k.
 - No left recursion.
 - (more details later)...
- Collectively, the restrictions guarantee that, given k input tokens, one can always select the correct ns to expand.

Eliminating common prefixes

- Left factor them, creating a new non-terminal for the common prefix and/or different suffixes.
- Before
 - If ::= if Test then Stats and | if Test then Stats else Stats and
- After
 - If ::= if Test then Stats IfCont
 - IfCont ::= end | else Stats and
- Grammar is a bit uglier
- Easy to do manually in a recursive-descent parser.

Eliminating left recursion:

- Before
 - E ::= E + T | T
 - T ::= T * F | F
 - F ::= id | (E) | ...
- After
 - E ::= T ECont
 - ECont ::= + T ECont | &
 - T ::= F TCont
 - TCont ::= * F TCont | &
 - F ::= id | (E) | ..

Just add sugar

- E ::= T { + T }
 T ::= F { * F }
- F ::= id | (E) | ..
- Sugared form is still pretty readable
- Easy to implement in hand-written recursive descent parser
- Concrete syntax tree is not as close to abstract syntax tree.

LL(1) Parsing Theory

Goal: Formal, rigorous description of those grammars for which “I can figure out how to do a top-down parse by looking ahead just one token”, plus corresponding algorithms.

Notation:
- T = Set of Terminals (Tokens)
- N = Set of Nonterminals
- $ = End-of-file character (T-like, but not in N ∪ T)
Table-driven predictive parser

- Automatically compute PREDICT table from grammar
- PREDICT(nonterminal,input-symbol)
 1. action, e.g. which rhs or error

Example 1

<table>
<thead>
<tr>
<th>Stmt</th>
<th>1 if expr then Stmt else Stmt</th>
<th>2 while Expr do Stmt</th>
<th>3 begin Stmts end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stmts</td>
<td>4 Stmt ; Stmts</td>
<td>S e</td>
<td></td>
</tr>
<tr>
<td>Expr</td>
<td>6 id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LL(1) Parsing Algorithm

push S$ /* S is start symbol */
while Stack not empty
 X := pop(Stack)
 a := peek at next token /* assume EOF = $ */
 if X is terminal or $
 If X=a, read token a else abort;
 else look at PREDICT(X, a) /* X is nonterminal */
 Empty : abort
 rule X → $ \alpha$: push α
 If not at end of input, abort

Constructing PREDICT: overview

- Compute FIRST set for each rhs
 - All tokens that can appear first in a derivation from that rhs
 - In case rhs can be empty, compute FOLLOW set for each non-terminal
 - All tokens that can appear right after that non-terminal in a derivation
 - Constructions of FIRST and FOLLOW sets are interdependent
- PREDICT depends on both

Example 1 (cont.)

<table>
<thead>
<tr>
<th>Stmt</th>
<th>1 if expr then Stmt else Stmt</th>
<th>2 while Expr do Stmt</th>
<th>3 begin Stmts end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stmts</td>
<td>4 Stmt ; Stmts</td>
<td>S e</td>
<td></td>
</tr>
<tr>
<td>Expr</td>
<td>6 id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRST(\alpha) – 1st “token” from \alpha

Definition: For any string \alpha of terminals and non-terminals, FIRST(\alpha) is the set of terminals that begin strings derived from \alpha, together with \epsilon, if \alpha can derive \epsilon. More precisely:

For any \alpha \in (N \cup T)^*,
FIRST(\alpha) =
\{ a \in T \mid \alpha \Rightarrow^* a \beta \text{ for some } \beta \in (N \cup T)^* \}
\cup
\{ \epsilon, \text{ if } \alpha \Rightarrow^* \epsilon \}
Computing FIRST – 4 cases

1. FIRST(ε) = {ε}
2. For all a ∈ T, FIRST(a) = {a}
3. For all A ∈ N, repeat until no change

 If there is a rule A → ε, add(ε) to FIRST(A)

 For all rules A → Y₁...Yₖ, add(FIRST(Yᵢ) - {ε})

 If ε ∈ FIRST(Yᵢ) then add(FIRST(Yᵢ₊₁) - {ε})

 If ε ∈ FIRST(Yᵢ₊₁) then add(FIRST(Yᵢ₊₂) - {ε})

 ... if ε ∈ FIRST(Y₁ Y₂...Yₖ) then add(ε)

Computing FIRST (Cont.)

4. For all any string Y₁...Yₖ ∈ (N ∪ T)⁺, similar:

 add(FIRST(Y₁) - {ε})

 if ε ∈ FIRST(Y₁) then add(FIRST(Y₂) - {ε})

 if ε ∈ FIRST(Y₁ Y₂) then add(FIRST(Y₃) - {ε})

 ... if ε ∈ FIRST(Y₁ Y₂...Yₖ) then add(ε)

[Note: defined for all strings; really only care about FIRST(right hand sides.)]

FOLLOW(B) – Next “token” after B

Definition: for any non-terminal B, FOLLOW(B) is the set of terminals that can appear immediately after B in some derivation from the start symbol, together with $, if B can be the end of such a derivation. ($ represents “end of input”.) More precisely: For all B ∈ N,

FOLLOW(B) = \{ a ∈ (T ∪ {$}) | S$*$α B aβ ∈ (N ∪ T ∪ {$})⁺ \}

(S is the Start symbol of the grammar.)

Computing FOLLOW(B)

Add $ to FOLLOW(S)

Repeat until no change

For all rules A → αB [i.e. all rules with a B in r.h.s],

Add (FIRST(β) - {ε}) to FOLLOW(B)

If ε ∈ FIRST(β) [in particular, if β is empty] then

Add FOLLOW(A) to FOLLOW(B)

Assume for all A that S$*$αAβ for some α,β ∈ (N ∪ T)⁺, else A irrelevant

Properties of LL(1) Grammars

- Clearly, given a conflict-free PREDICT table (≤ 1 entry/cell), the parser will do something unique with every input
- Key fact is, if the table is built as above, that something is the correct thing
- I.e., the PREDICT table will reliably guide the LL(1) parsing algorithm so that it will:
 - Find a derivation for every string in the language
 - Declare an error on every string not in the language

Defn: G is LL(1) iff every cell has ≤ 1 entry
Exercises
(1st especially recommended)

- Easy: Pick some grammar with common prefixes, left recursion, and/or ambiguity.
- Build PREDICT; it will have conflicts
- Harder: prove that every grammar with ≥1 of those properties will have PREDICT conflicts
- Harder: Find a grammar with none of those features that nevertheless gives conflicts.
 - i.e., absence of those features is necessary but not sufficient for a grammar to be LL(1).
- Harder, for theoryheads: if the table has conflicts, and the parser chooses among them nondeterministically, it will work correctly

Example 2

```
E ::= T { + T }
T ::= F { * F }
F ::= − F | id | ( E )
```

Example 2 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>FIRST</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 E ::= T E'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 E' ::= id * F T'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 F ::= id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (E)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2: PREDICT

<table>
<thead>
<tr>
<th>id</th>
<th>+</th>
<th>−</th>
<th>*</th>
<th>/</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREDICT and LL(1)

- The PREDICT table has at most one entry in each cell if and only if the grammar is LL(1)
 - i.e., there is only one choice (it’s predictive), making it fast to parse and easy to implement
- Multiple entries in a cell
 - Arise with left recursion, ambiguity, common prefixes, etc.
 - Can patch by hand, if you know what to do
 - Or use more powerful parser (LL(2), or LR(k), or…?)
 - Or change the grammar

Recursive descent parsers

- Write procedure for each non-terminal
- Each procedure selects the correct right-hand side by peeking at the input tokens
- Then the r.h.s. is consumed
 - If it’s a terminal symbol, verify it is next and then advance through the token stream
 - If it’s a non-terminal, call corresponding procedure
- Build and return AST representing the r.h.s.
Recursive descent example

Stat ::= if expr then Stat else Stat
 | while Expr do Stat
 | begin Stmts end
Stmts ::= Stat ; Stmts
Expr ::= id

ParseStmt() { switch (next token) {
 "begin": ParseStmts(); read "end"; break;
 "while": ParseExpr(); read "do"; ParseStmt(); break;
 "if": ParseExpr(); read "then"; ParseStmt();
 read "else"; ParseStmt(); break;
 default: abort;
}
}

LL(1) and Recursive Descent

If the grammar is LL(1), it’s easy to build a recursive descent parser

- One nonterminal/row one procedure
- Use 1 token lookahead to decide which rhs
- Table-driven parser’s stack recursive call stack
- Recursive descent can handle some non-LL(1) features, too.

Example

LL(1) & recursive descent

Stat ::= if expr then Stat else Stat
 | while Expr do Stat
 | begin Stmts end
Stmts ::= Stat ; Stmts
Expr ::= id

ParseStmt() { switch (next token) {
 "begin": ParseStmts(); read "end"; break;
 "while": ParseExpr(); read "do"; ParseStmt(); break;
 "if": ParseExpr(); read "then"; ParseStmt();
 read "else"; ParseStmt(); break;
 default: abort;
}
}

Example

non-LL(1) & recursive descent

Stat ::= if expr then Stat
 | while Expr do Stat
 | begin Stmts end
Stmts ::= Stat ; Stmts
Expr ::= id

ParseStmt() { switch (next token) {
 "begin": ...
}
}

It’s demo time…

Let’s look at some of the PL/0 code to see how the recursive descent parsing works in practice

Parser::ParseStmts() { StmtsArray* Parser::ParseStmts() { StmtsArray* Stmts = new StmtsArray; Stmts->stmt;
for (;;) {
 Token t = scanner->Peek();
 switch (t->Kind()) {
 case IDENT: stmt = ParseIdentStmt(); break;
 case OUTPUT: stmt = ParseOutputStmt(); break;
 case IF: stmt = ParseIfStmt(); break;
 case WHILE: stmt = ParseWhileStmt(); break;
 default: return Stmts; // no more stmts
 }
 Stmts->add(stmt);
 scanner->Read(SEMICOLON);
}
}

Parser::ParseIfStmt()
Stmt* Parser::ParseIfStmt()
{
scanner->Read(IF);
Expr* test = ParseTest();
scanner->Read(THEN);
StmtArray* stmts = ParseStmts();
scanner->Read(END);
return new IfStmt(test, stmts);
}

Parser::ParseWhileStmt()
Stmt* Parser::ParseWhileStmt()
{
scanner->Read(WHILE);
Expr* test = ParseTest();
scanner->Read(DO);
StmtArray* stmts = ParseStmts();
scanner->Read(END);
return new WhileStmt(test, stmts);
}

Parser::ParseIdentStmt()
Stmt* Parser::ParseIdentStmt()
{
Token* id = scanner->Read(IDENT);
if (scanner->CondRead(LPAREN))
ExprArray* args;
if (scanner->CondRead(RPAREN))
{
args = NULL;
}
else
{
args = ParseExprs();
scanner->Read(RPAREN);
}
return new CallStmt(id->ident(), args);
scanner->Read(GETS);
return new AssignStmt(id, ParseExpr());
}

Parser::ParseSum()
Expr* Parser::ParseSum()
{
Expr* expr = ParseTerm();
for (; ;)
{
Token* t = scanner->Peek();
if (t->kind() == PLUS || t->kind() == MINUS)
{
scanner->Get(); // eat the token
Expr* expr2 = ParseTerm();
expr = new BinOp(t->kind(), expr, expr2);
}
else
{
return expr;
}
}
}

Parser::ParseTerm()
Expr* Parser::ParseTerm()
{
Expr* expr = ParseFactor();
for (; ;)
{
Token* t = scanner->Peek();
if (t->kind() == MUL || t->kind() == DIVIDE)
{
scanner->Get(); // eat the token
Expr* expr2 = ParseFactor();
expr = new BinOp(t->kind(), expr, expr2);
}
else
{
return expr;
}
}
}

Yacc — A bottom-up-parser generator

"yet another compiler-compiler"

Input:
- grammar, possibly augmented with action code

Output:
- C code to parse it and perform actions
- LALR(1) parser generator
- practical bottom-up parser
- more powerful than LL(1)
- modern updates of yacc
- yacc++, bison, byacc, ...

CSE401, Au '02, © W.L. Ruzzo and UW CSE 1994-2002 11
Yacc input grammar

Example

```plaintext
assignstmt: IDENT GETS expr

ifstmt: IF test THEN stmts END
    | IF test THEN stmts ELSE stmts END

expr: term
    | expr '+ ' term
    | expr '-' term

factor: '- ' factor
    | IDENT
    | INTEGER
    | INPUT
    | '(' expr ')' 
```

Yacc with actions

```plaintext
assignstmt: IDENT GETS expr    { $ = new AssignStmt($1, $3); }

ifstmt: IF be THEN stmts END    { $ = new IfStmt($2, $4, NULL); }
    | IF be THEN stmts ELSE stmts END    { $ = new IfStmt($2, $4, $6); }

expr: term    { $ = $1; }
    | expr '+ ' term    { $ = new BinOp(PLUS, $1, $3); }
    | expr '-' term    { $ = new BinOp(MINUS, $1, $3); }

factor: '- ' factor    { $ = new UnOp(MINUS, $2); }
    | IDENT    { $ = new VarRef($1); }
    | INTEGER    { $ = new IntLiteral($1); }
    | INPUT    { $ = new InputExpr; }
    | '(' expr ')'    { $ = $2; }
```

Parsing summary

- Discover/impose a useful (hierarchical) structure on flat token sequence
- Represented by Abstract Syntax Tree
- Validity check syntax of input
- Could build concrete syntax tree (but don’t)
- Many methods available
 - Top-down: LL(1)/recursive descent common for simple, by-hand projects
 - Bottom-up: LR(1)/LALR(1)/SLR(1) common for more complex projects
 - parser generator (e.g., yacc) almost necessary

Parsing summary – Technical details you should know

- Context-free grammars
 - Definitions
 - Manipulations (algorithmic)
 - Left factor common prefixes
 - Eliminating left recursion
 - Ambiguity & (semi-heuristic) fixes
 - meta-rules (code/precedence tables)
 - rewrite grammar
 - change language
- Building a table-driven predictive parser
 - LL(1) grammar: definition & common obstacles
 - PREDICT(nonterminal, input symbol)
 - FIRST(RHS)
 - FOLLOW(nonterminal)
- Building a recursive descent parser
 - Including AST