Objectives (today & next class)

- Define overall theory and practical structure of lexical analysis
- Briefly recap regular languages, expressions, finite state machines, and their relationships
- How to define tokens with regular expressions
- How to leverage this to implement a lexer

Lexical analysis (scanning)

- The scanner/lexer groups characters into tokens
 - A token is a basic, atomic chunk of syntax, e.g.
 - Literals: 17, 42, 3.1415, "Hello."
 - Punctuation & operators: ;,],), ;, <, <=, ...
 - Reserved words: if, then, else, for, while, int, char, ...
 - Identifiers: sneak, a_doghead, sqrt, printf, ...
- The lexer also removes whitespace
 - Whitespace: characters that are ignored between tokens
 - Ex: spaces, tabs, newlines, comments
 - Definitions of tokens and whitespace vary among languages

Separation of lexing & parsing

- A universal separation:
 - Lexer: character stream to token stream
 - Parser: token stream to syntax tree
- Advantages:
 - Simpler design
 - Based on related but distinct theoretical underpinnings
 - Compartmentsalizes some low-level issues, e.g., I/O, internationalization, ...
 - Faster
 - Lexing is time-consuming in many compilers (40-60% ?)
 - By restricting the job of the lexer, a faster implementation is usually feasible

Overall approach to scanning

- Define language tokens using regular expressions
 - Natural representation for tokens
 - But difficult to produce a scanner from REs
- Convert the regular expressions into a non-deterministic finite state automaton (NFA)
 - Straightforward conversion
 - Can produce a scanner from NFA, but an inefficient one
- Convert the NFA into a deterministic finite state automaton (DFA)
 - Straightforward conversion
- Convert the DFA into an efficient scanner implementation

Language & automata theory: a speedy reminder

- Alphabet: a finite set of symbols
- String: a finite, possibly empty, sequence of symbols from an alphabet
- Language: a set, often infinite, of strings
- Finite specifications of (possibly infinite) languages:
 - Automaton – a recognizer: a machine that accepts all strings in the language (and rejects all other strings)
 - Grammar – a generator: a system for producing all strings in the language (and no other strings)
- A language may be specified by many different grammars and automata
- A grammar or automaton specifies only one language
Definitions: token vs lexeme

- **Token**: an "atom of syntax"; set of lexemes
 - Ex: int literal, string literal, identifier, keyword-if
- **Lexeme**: the character string forming a token
 - Ex: 17, 42, "Hello", "Goodbye", x, dogbert, if
- A token may have attributes, if the set has more than a single lexeme
 - "int literal" token might have attribute "17" or "42"
 - "keyword-if" token probably needs no attributes

Regular expressions: a notation for defining tokens

- **Regular expressions (REs)** are defined inductively:
 - **Base cases**
 - The empty string \(\epsilon\)
 - A symbol from the alphabet
 - **Inductive cases**
 - Choice of two REs: \(E_1 \mid E_2\)
 - Sequence of two REs: \(E_1E_2\)
 - Kleene closure (zero or more occurrences) of an RE: \(E^*\)

Examples

- `a`
- `ab`
- `(a | b)`
- `(a | b) c`
- `a | b c`
- `a b*`
- `(a | b)(0 | 1)*`

Notational conveniences: no additional expressive power

- \(E^*\) means one or more occurrences of \(E\)
- \(E^k\) means \(k\) occurrences of \(E\) (\(k\) a literal constant)
- \([E]\) means 0 or 1 occurrences of \(E\) (it’s optional)
- \(E^*\) means \(E^+\)
- \(\text{not}(E)\) means any character in the alphabet but \(E\)
- \(E_1 \text{not}(E_2)\) means any strings matching \(E_1\) except those matching \(E_2\)

Naming regular expressions: simplify RE definitions

- Can assign names to regular expressions
- Can use these names in the definition of another regular expression
- **Examples**
 - letter ::= a | b | … | z
 - digit ::= 0 | 1 | … | 9
 - alphabet ::= letter | digit
- Can eliminate names by macro expansion
- No recursive definitions are allowed? Why?

Regular expressions for PL/0

- Digit ::= 0 | … | 9
- Letter ::= a | … | z | A | … | Z
- Integer ::= Digit;
- AlphaNum ::= Letter | Digit
- Id ::= Letter AlphaNum
- Keyword ::= module | procedure | begin | end | const
- Var ::= if | then | while | do | input
- Operator ::= = | * | / | + | - | < > | = | < = | > = | >
- Token ::= Id | Integer | Keyword | Operator | Funct
- White ::= <space> | <tab> | <newline>
- Program ::= (Token | White)*
Generate scanner from regular expressions?
- This would be ideal: REs as input to a scanner generator, and a scanner as output
- Indeed, some tools can mostly do this
- But it’s not straightforward to do this
 - One reason: there is a lot of non-determinism — choice — inherent in most regular expressions
 - Choice can be implemented using backtracking, but it’s generally very inefficient
- In any case, these tools go through a process like the one we’ll look at

Next steps
- Convert regular expressions to non-deterministic finite state automata (NFA)
 - Then convert the NFA to deterministic finite state automata (DFA)
 - Then convert DFA into code

Finite state automaton
- A finite set of states
 - One marked as the initial state
 - One or more marked as final states
- A set of transitions from state to state
 - Each transition is marked with a symbol from the alphabet or with ε
- Operate by reading symbols in sequence
 - A transition can be taken if it labeled with the current symbol
 - An ε-transition can be taken at any point, without consuming a symbol
- Accept if no more input and in a final state
- Reject if no transition can be taken or if no more input and not in a final state (DFA case)

DFA vs. NFA
- A deterministic finite state automaton (DFA) is one in which there is no choice of which transition to take under any condition
- A non-deterministic finite state automaton (NFA) is one in which there is a choice of which transition to take in at least one situation
 - “Accept” == some way to reach final state
 - “Reject” == all ways fail at end of input

Plan of attack
- Convert from regular expressions to NFAs because there is an easy construction
 - However, NFAs encode choice, and choice implies backtracking, which is slow
- Convert from NFAs to DFAs, because there is a well-defined procedure
 - And DFAs lay the foundation for an efficient scanner implementation
Exercise

Consider the language that includes only those binary strings that have odd parity.
For this language, define
- the alphabet
- a grammar
- an automaton

Converting REs to NFAs:

base cases

\[\epsilon \]

\[X \]

\[E_1 \mid E_2 \]

\[E_1 \quad \epsilon \quad E_2 \]

\[E^* \]

Those rules are sufficient for constructing an equivalent NFA from a regular expression.
Exercise
- Define a regular expression that recognizes comments of the form
 - `/* ... */`
 - Be careful in defining "..."
- Then convert that regular expression to an NFA

Building lexers from regular expressions
- Convert the regular expressions into deterministic finite state automata (DFA)
 - Manually
 - Mechanically by converting first to non-deterministic finite state automata (N DFA) and then into DFA
- Convert DFA into scanner implementation
 - By hand into a collection of procedures
 - Mechanically into a table-driven parser

Why convert to DFAs?
- Because
 - they are equivalent in power to NFAs
 - they are deterministic, which makes them a terrific basis for an efficient implementation of a scanner

NFA => DFA
- Basic problem
 - NFA can choose among alternative paths
 - either ε transitions or
 - multiple transitions from a state with the same label
 - But a DFA cannot have this kind of choice
- Solution: subset construction
 - In the newly constructed DFA, each state represents a set of states in the NFA,
- Key Idea:
 - The state of the DFA after reading \(x_1 x_2 \ldots x_k \) is the set of all states that the NFA might reach after reading the same input

Subset construction algorithm
initial step
- Create start state of new DFA
 - Label it with the set of NFA states that can be reached without consuming any input
 - i.e., NFA’s start state, or reachable by ε transitions
 - Think of it as all possible start states in the NFA, since there could be more than one, given the ε transitions
 - Then "process" this new start state
 - Details below

Example
- Example from Crafting a Compiler, Fischer & LeBlanc
Example (cont.)

Subset construction algorithm

processing a state

- To process a state S in the new DFA with label (s_1,\ldots,s_n)
- For each symbol x in the alphabet
 - Compute the set T of NFA states reached from any of the NFA states s_1,\ldots,s_n by one x transition followed by any number of ε transitions
 - If T is not empty
 - If there is not already a DFA state with T as a label, create one, and add T to the list of states to be processed
 - Add a transition labeled x from S to T
- Repeat until no unprocessed states

defining final states

- After the algorithm terminates
- Mark every DFA state as final if any of the NFA states in its label is final

Subset construction: notes

- It is provable that this works and produces an equivalent DFA (c.f. CSE 322)
- This activity can be automated
- Question: What can be said about the number of states in the DFA relative to the NFA?
 - In theory? In practice?

Minimizing DFAs

- There is also an algorithm for minimizing the number of states in a DFA
- Given an arbitrary DFA, one can find a unique DFA with a minimum number of states that is equivalent to the original DFA
 - Except for a renaming of the states
 - Essentially, try to merge states

Constructing scanners from DFAs

- Use a table-driven scanner
- Write disciplined procedures that encode the DFA
- We’ll talk about both (the first briefly)
- The second approach is used in the PL/0 compiler
 - Because it’s generally easier to handle a few practical issues (but may be slower?)
Approach 1: Table-driven

- Represent the DFA as an adjacency matrix
 - One row per state
 - One column per character in the alphabet
 - Entry is state to transition to
- Mechanically walk the input, taking appropriate transitions
- Rules for termination remain unchanged

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,2)</td>
<td>(3,4,5)</td>
</tr>
<tr>
<td>2</td>
<td>(3,4,5)</td>
<td>(5)</td>
</tr>
<tr>
<td>3</td>
<td>(4,5)</td>
<td>(5)</td>
</tr>
<tr>
<td>4</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

Approach 2: Procedural

- Define a procedure for each state in the DFA
- Use conditionals to check the input character and then make the appropriate transition
- A transition is a call to the procedure for the next state
- (Call overhead optimizable)

procedure \{3,4,5\} begin
 if nextChar() == 'a'
 call (5)
 else if nextChar() == 'b'
 call (4,5)
 else
 reject("no transition out of this state")
end

The heart of the PL/0 scanner

it’s not quite as clean (but it’s not bad!)

Where’s the DFA?
- How come five kinds of tokens and only three branches?

PL/0's GetIdent method

Token* Scanner::getIdent() {
 char ident[MaxIdLength + 1];
 int LengthOfId = 0;
 while (isalnum(CurrentCh)) {
 ident[LengthOfId] = tolower(CurrentCh);
 LengthOfId++;
 GetCh();
 }
 ident[LengthOfId] = '0';
 return SearchReserved(ident);
}

PL/0's GetInt method

Token* Scanner::getInt() {
 int integer = 0;
 while (isdigit(CurrentCh)) {
 integer = 10 * integer + (CurrentCh - '0');
 GetCh();
 }
 return new IntegerToken(integer);
}

PL/0's GetPunct method

Token* Scanner::getPunct() {
 Token* T;
 switch (CurrentCh) {
 case '.':
 T = new Token(GETS);
 break;
 case '<':
 T = new Token(GETB);
 if (CondReadCh('>') && CondReadCh(MORE)) {
 T = new Token(DOUBLE_GT);
 } else if (CondReadCh('"')) {
 T = new Token(DOUBLE_QUOTES);
 } else {
 T = new Token(SECURITY);
 }
 break;
 }
 if (CondReadCh('"')) {
 T = new Token(DOUBLE_QUOTES);
 break;
 }
A few PL/0 scanner notes

- There is a Scanner class
 - There is only one instance of this class
 - This is an example of the Singleton design pattern
- The high-level structure we showed has the scanner scan before the parser parses
 - Study the compiler to figure out what really happens
- Make sure (for this and all other phases) to read the interface (the .h file) very, very carefully

Language design issues (lexical)

- Most languages are now free-form
 - Layout doesn’t matter
 - Use whitespace to separate tokens, if needed
 - Alternatives include
 - Fortran, Algol68: whitespace is ignored
 - Haskell: use layout to imply grouping
- Most languages now have reserved words
 - Cannot be used as identifiers
 - Alternative: PL/1 has keywords that are treated specially
 - only in certain contexts, but may be used as identifiers, too
- Most languages separate scanning & parsing
 - Alternative: C/C++ type vs.

```c
typedef int mytype;
int myvar;
mytype a, b, c;
```

Classes of languages

- Regular languages can be specified by
 - regular expressions
 - regular grammars
 - finite-state automata (FSA)
- Context-free languages (CFL) can be specified by
 - context-free grammars (CFG)
 - push-down automata (PDA)
- Turing-computable languages can be specified by
 - arbitrary grammars
 - Turing machines

Strict inclusion of these classes of languages

Objectives: next lectures

- Understand the theory and practice of parsing
- Describe the underlying language theory of parsing (CFGs, etc.)
- Understand and be able to perform top-down parsing
- Understand bottom-up parsing