q CSE401: Backend (A)

Larry Ruzzo
Spring 2001

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
©W.L. Ruzzo and UW CSE, 1994-2001

i Now

= ...what to do now that we have this wonderful
AST+ST representation

= We’'ll look mostly at interpreting it or compiling
it

= But you could also analyze it for program
properties

= Or you could “unparse” it to display aspects of the
program on the screen for users

= What kinds of analyses could we perform on
the AST+ST representation?

= The representation is of a complete and legal
program in the source language

= Ex: ensure that all variables are initialized
before they are used

= Some languages define this as part of their
semantic checks, but many do not

= What are some other example analyses?

= !mplementing a language

= If we want to execute the program from this
representation, we have two basic choices
= Interpret it
= Compile it (and then run it)

= Tradeoffs between this include

= Time until the program can be executed
(turnaround time)

= Speed of executing the program
= Simplicity of the implementation
= Flexibility of the implementation

=g |Nterpreters

= Essentially, an interpreter defines an EVAL
loop that executes AST nodes
= To do this, we create data structures to
represent the run-time program state
= Values manipulated by the program
= An activation record for each called procedure
= Environment to store local variable bindings
= Pointer to calling activation record (dynamic link)
= Pointer to lexically-enclosing activation record (static link)

CSE 401, (c) W.L. Ruzzo and UW CSE, 1994-2001

Pros and cons of
interpretation

= Pros

= Simple conceptually, easy to implement
= Fast turnaround time
= Good programming environments
= Easy to support fancy language features
= Con: slow to execute
= Data structure for value vs. direct value
= Variable lookup vs. registers or direct access
= EVAL overhead vs. direct machine instructions
= No optimizations across AST nodes

Compilation

= Divide the interpreter's work into two parts
= Compile-time
= Run-time

= Compile-time does preprocessing

= Perform some computations at compile-time only
once

= Produce an equivalent program that gets run
many times
= Only advantage over interpreters: faster
running programs

Compile-time processing

= Decide on representation and placement of
run-time values
= Registers
= Format of stack frames
= Global memory
= Format of in-memory data structures (e.g.,
records, arrays)
= Generate machine code to do basic
operations
= Like interpreting, but instead generate code to be
executed later

= Do optimization across instructions if desiree

Compile-time vs. run-time

Compile-time Run-time
Procedure Activation record/
stack frame
Scope, symbol table Environment Details
(content of stack frame) <:| are
Variable Memory location, register coming

Lexically-enclosed scope | Static link

Calling procedure Dynamic link

An interpreter for PL/O

= Data structure to represent ;'uglsisc?’ﬂ'“ef
run-time values: val ue ’

hierarchy virtual int intvalue(){
= Also useful for virtual bool boolValue(){
resol ve_const ant .}

Value-level analogue of Type | %
" 9 yP class IntegerValue : public

= Data structure to store Value {
val ues for each variable public:
= ActivationRecord that bool isinteger()
contains ~ {retuntrue;}
Acti vati onRecor dEntri es '"‘(":Ie\{ﬁ‘:ﬁ‘*gajue;)
= Run-time analogue of void print()
Synbol Tabl eScope { printf("%d", _value); }

%

= eval method per AST class

Example eval

Val ue* UnQp:: eval (SynirabScope* s, ActivationRecord* ar)
Val ue* arg = _expr->eval (s, ar);

switch(_op) {
case M NUS:
return new I ntegerVal ue(- arg->intValue());
case ODD:
return
new Bool eanVal ue(arg->i nt Value() % == 1);
defaul t:
Pl zero->fatal ("unexpected UNOP");
}

1

CSE 401, (c) W.L. Ruzzo and UW CSE, 1994-2001

Activation records

= Each call of a procedure allocated an
activation record (instance of
Acti vati onRecor d)
= Basically, equivalent to a stack frame and
everything associated with it
= An activation record primarily stores
= Mapping from names to Vval ues for each formal
and local variable in that scope (environment)
= Don't store values of constants, since they are in the
symbol table
= Lexically enclosing activation record (static link)

= Why needed? To find values of non-local variables
12

wg Calling procedure

= There must be a logical link from the
activation of the calling procedure to the
called procedure
= Why? So we can handle returns
= In PL/O, this link is implicit in the call structure
of the PL/O eval functions
= S0, when the source program returns from a
procedure, the associated PL/0 eval function
terminates and returns to the caller
= Some interpreters represent this link explicitly

= And we will definitely do this in the compiler itself
13

Activation records &
symbol tables

= For each procedure in a program
= Exactly one symbol table, storing types of names
= Possibly many activation records, one per call,

each storing values of names

= For recursive procedures there can be
several activation records for the same
procedure on the stack simultaneously

= All activation records for a procedure have
the same "shape," which is described by the
single, shared symbol table

nodule M
var res: int;
procedure
fact(n:int);
begi n
if n>0 then
res :=res * n;
fact(n-1);
end;
end fact;
begi n
res := 1;
fact (input);
output := res;
end M

=g | his stuff is important!

= So we'll repeat in here (interpreting)
= And again in compiling

q CSE401: Backend (B)

Larry Ruzzo
Spring 2001

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
©W.L. Ruzzo and UW CSE, 1994-2001

i Interpreting PL/O

= We're looking at how to take the AST+ST
representation and execute it interpretively

= We looked at the basic idea of recursively
applying eval to the AST

= We looked at activation records and their
relationship to symbol tables

= We briefly discussed static links
= And even more briefly dynamic links

CSE 401, (c) W.L. Ruzzo and UW CSE, 1994-2001

Static linkage

block structure of the

= Connect each modul e M
activation record to)
its lexically enclosing pr:foc(é('y": L;) .
activation record begin R(x+y); end Q
= This represents the proc R(z:int);

begin P(x+y+z); end

program X

= When calling a begi Eeg' n Qx#y);end P
procedure, what X i=1:
activation record to P(2);

use for the lexically end M
enclosing activation

record?

19

Nested procedure semantics:

= Allow nesting of procedures

= Allow procedures to be passed as
regular values, but without referencing
variables in the lexically enclosing
scope

o Lexically enclosing activation record is
always the global scope

Nested procedure semantics:

5P

= Allow nesting of procedures

= Allow references to variables of lexically
enclosing procedures

= Don't allow procedures to be passed
around

o Caller can always compute callee’s
lexically enclosing activation record

21

Nested procedure semantics:

og Pascal

= Allow nesting of procedures

= Allow references to variables of lexically
enclosing procedures

= Allow procedures to be passed down
but not to be returned

o Represent procedure value as a pair of
a procedure and an activation record
(closure)

= Example: Pascal semantics

nmodul e mai n() {
procedure P(){
int x;
procedure nyconp(...){
if(x==42) then ... else ... ;

}

| want quicksort to

X use nyco)

call quicksort(...,mycomp); -~ rTy MPx=42

even if somebody
} changes x first!
call PO;

}

23

CSE 401, (c) W.L. Ruzzo and UW CSE, 1994-2001

Nested procedure semantics:
ML, Scheme, Smalltalk

= Fully first-class nestable functions

= Procedures can be returned from their
lexically enclosing scope

o Put closures and environments in the
heap

Example:
s ML/scheme/... semantics

nmodul e mai n() {
procedure P(){
int x;
procedure nyconp(...){
if(x==42) then ... else ... ;

}
| want quicksort to
return < X:=42 use nyco 0
\mwu\ickson(...,mycomp); rTy MPx=42
even if somebody

} changes x first!

call the fn that P() returns; And even after
} P() returns!

25

Example eval method for
i PL/O (some error checking omitted)

Val ue* Var Ref:: eval (SynTabScope* s, ActivationRecord* ar)

SynTabEntry* ste = s->l ookup(_ident);
if (ste == NULL) {Plzero->fatal ..);}
if (ste->isConstant()) {

return ste->value();

}

if (ste->isVariable()) {
ActivationRecordEntry* are = ar->lookup(_ident);
Value* value = are->value();
return value;

}
Plzero->fatal("referencing identifier that's

not a constant or variable");
return NULL;

Another eval method for PL/O

some parts omitted

Value* BinOp::eval(SymTabScope* s, ActivationRecord* ar) {
Value* left = _left->eval(s, ar);
Value* right = _right->eval(s, ar);

switch(_op) {
case PLUS: return new IntegerValue(left->intValue() +
right->intValue());

case DIVIDE:
if (right->intvalue() == 0)
Plzero->evalError("divide by zero", line);

return new IntegerValue(left->intValue() /
right->intValue());
case LSS: return new BooleanValue(left->intValue() <
right->intValue());
L}

27

i eval Assignment Statement

voi d AssignStnt::eval (SynTabScope* s,
ActivationRecord* ar) {

Val ue*& | hs = _lval ue->eval _address(s, ar);
Val ue* rhs = _expr->eval (s, ar);
Il hs = rhs;

}

= cval while Statement

void WhileStmt::eval(SymTabScope* s,
ActivationRecord* ar) {
for () {
Value* test = _test->eval(s, ar);
if (test->boolValue()) {
for (int i=0;i<_loop_stmts->length(); i++) {
_loop_stmts->fetch(i)->eval(s, ar);

}else {
break;
}
}
}

29

CSE 401, (c) W.L. Ruzzo and UW CSE, 1994-2001

- NOte: recursion

= By now you should understand that recursion
is much much more than a cool way to write
tiny little procedures in early programming
language classes

= If you don't really see this yet, | have a
special assignment for you
= Rewrite either the parser or the interpreter without

using recursion

= Oh, you can do it, for sure...

declarations

void VarDecl ::eval (ActivationRecord* ar) {
for (int i =0; i < _items->length(); i++) {
_items->fetch(i)->eval (ar);
}
}

void VarDecl Item:eval (ActivationRecord* ar) {
ActivationRecordEntry* varActivationRecordEntry =
new Var Acti vati onRecor dEnt ry(_name, undefi ned);
ar->enter (var Acti vati onRecordEntry);

31

i eval constant declarations

voi d ConstDecl::eval (ActivationRecord* ar) {
--OK, what goes here?

}

= €val procedure calls

void Call Stnt::eval (SynTabScope* s, ActivationRecord* ar)
{

Val ueArray* argVal ues = new Val ueArray;

for (int i =0; i < _args->length(); i++) {
Val ue* argValue = _args->fetch(i)->eval (s, ar);
ar gVal ues- >add(ar gVal ue) ;

)SymTabEnt ry* ste = s->l ookup(_ident);
if (ste == NULL) {Plzero->fatal ..);}
ActivationRecord* enclosingAR;
ActivationRecordEntry* are =

ar->lookup(_ident, enclosingAR);
if (are == NULL) {Plzero->fatal...);}
ProcDecl* callee = are->procedure();
callee->call(argValues, enclosingAR);

33

eval procedure calls Il

voi d ProcDecl :: call (Val ueArray* argVval ues,
ActivationRecor d*
encl osi ngAR) {
ActivationRecord* calleeAR =
new Acti vati onRecord(encl osi ngAR);

for (int i =0; i < _formals->ength(); i++) {
Formal Decl * formal = _formals->fetch(i);
Val ue* actual = argValues->fetch(i);

formal - >bind(actual, calleeAR);

_bl ock->eval (cal | eeAR);

}

OK, that's most of
interpretation

= Next

= memory layout (data representations, etc.)
= stack layout, etc.

= Then back to how we compile activation
records, etc.

= And generate code, of course

35

CSE 401, (c) W.L. Ruzzo and UW CSE, 1994-2001

