
1

CSE401: Parsing (A)

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

2

Objectives: parsing lectures

! Understand the theory and practice of parsing

! Describe the underlying language theory of
parsing (CFGs, etc.)

! Understand and be able to perform top-down
parsing

! Understand bottom-up parsing

! Today’s focus: grammars and ambiguity

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

3

Parsing

! AST
• Captures hierarchical structure of the source program

• It is the primary representation of the program used by the
rest of the compiler

– It gets augmented and annotated, but the basic structure of the AST
is used throughout

sequence
of tokens

abstract syntax
tree (AST)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

4

Parsing: two jobs

! Ensure that the program is syntactically correct
• a := 3 + 5 * 4; vs. a := 3 * / 4;

• if x > y then m := x; vs. if x < y else m := x;

! Put the sequence of tokens into the AST structure

:=

a +

3 *

5 4

if

> :=

x y m x

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

5

Context-free grammars (CFGs)

! For lexing, we used regular expressions as the basic
underlying notation

! For parsing, we use context-free grammars in much
the same way
• Regular expressions are not powerful enough

– Intuitively, they can’t handle balanced nesting (anbn)

• And more general grammars are more powerful than we
need

– Well, we could use more power, but instead we delay some
checking to semantic analysis instead of making all the analysis
based on CFGs U

W
C

SE
40

1
A

Q
20

00
•D

.N
ot

ki
n

•A
ll

ri
gh

ts
re

se
rv

ed
•P

ar
si

ng
A

•S
lid

e
6

CFG terminology

! Terminals: the alphabet (e.g., set of legal tokens)

! Nonterminals: symbols defined in terms of terminals
and nonterminals

! Production: rule that defines a nonterminal in terms of
a finite sequence of terminals and nonterminals

! Start symbol: root symbol defining the language
! Program ::= Stmt

Stmt ::= if Expr then Stmt else Stmt end
Stmt ::= while Expr do Stmt end

2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

7

EBNF description of PL/0 syntax

Program ::= module Id ; Block Id .

Block ::= DeclList begin StmtList end

DeclList ::= { Decl ; }

Decl ::= ConstDecl | ProcDecl | VarDecl

ConstDecl ::= const ConstDeclItem { , ConstDeclItem }

ConstDeclItem ::= Id : Type = ConstExpr

ConstExpr ::= Id | Integer

VarDecl ::= var VarDeclItem { , VarDeclItem }

VarDeclItem ::= Id : Type

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

8

EBNF description of PL/0 syntax

ProcDecl ::= procedure Id (

[FormalDecl {, FormalDecl}]) ;

Block Id

FormalDecl::= Id : Type

Type ::= int

StmtList ::= { Stmt ; }

Stmt ::= CallStmt | AssignStmt | OutStmt |

IfStmt | WhileStmt

CallStmt ::= Id ([Exprs])

AssignStmt::= Lvalue := Expr

Lvalue ::= Id

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

9

EBNF description of PL/0 syntax

OutStmt ::= output := Expr

IfStmt ::= if Test then StmtList end

WhileStmt ::= while Test do StmtList end

Test ::= odd Sum | Sum Relop Sum

Relop ::= <= | <> | < | >= | > | =

Exprs ::= Expr {, Expr }

Expr ::= Sum

Sum ::= Term { (+ | -) Term }

Term ::= Factor { (* | /) Factor }

Factor ::= - Factor | LValue | Integer |

input | (Expr)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

10

Produce a syntax tree for squares.0
in groups, 5 minutes

module main;

var x:int, squareret:int;
procedure square(n:int);
begin

squareret := n * n;
end square;

begin
x := input;
while x <> 0 do

square(x);
output := squareret;
x := input;

end;

end main.

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

11

Derivations and parsing

! Derivation
• A sequence of expansion steps,

• Beginning with the start symbol,

• Leading to a string of terminals

! Parsing: inverse of derivation
• Given a target string of terminals,

• Recover nonterminals representing structure

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

12

Parse trees

! We can represent derivations and parses as a parse tree
• Concrete syntax tree

• Abstract syntax tree

:=

a +

3 *

5 4

AStmt

a := Expr

3 + Expr

4 5*

3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

13

An example expression grammar

! E ::= E Op E | - E | (E) | id
Op ::= + | - | * | /

! In groups, use this grammar and quickly find
parse trees for
A. 3 * 5

B. 3 + 4 * 5

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

14

Ambiguity

! Some grammars are ambiguous
• Multiple different parse trees with the same final string

• (Some languages are ambiguous, with no possible non-
ambiguous grammar; but we shy away from them)

! Since the structure of the parse tree captures some of
the meaning of a program
• Ambiguity is bad since it implies multiple possible

meanings for the same program

! Consider the example on the previous slide

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

15

Another famous ambiguity:
dangling else

! Stmt ::= … |
if Expr then Stmt |
if Expr then Stmt else Stmt

! if e1 then if e2 then s1 else s2

! To which then does the else belong?
• The compiler isn’t going to be confused
• However, if the compiler chooses a meaning different from what the

programmer intended, it could get ugly

! Any ideas for overcoming this problem?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

16

Resolving the ambiguity: #1

! Add a meta-rule
• For instance, “else associates with the closest

previous if”

! This works and keeps the original grammar
intact

! But it’s ad hoc and informal

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

17

Resolving the ambiguity: #2

! Rewrite the grammar to resolve the ambiguity explicitly

! Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= … |

if Expr then MatchedStmt
else MatchedStmt

UnmatchedStmt ::= if Expr then Stmt |
if Expr then MatchStmt

else UnmatchedStmt

! Formal, no additional meta-rules

! Somewhat more obscure grammar

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

18

Resolving the ambiguity: #3

! Redesign the programming language to remove the
ambiguity

! Stmt ::= if Expr then Stmt end |
if Expr then Stmt else Stmt end

! Formal, clear, elegant
! Allows StmtList in then and else branch, without

adding begin/end

! Extra end required for every if statement

4

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

19

What about that expression grammar?

! How to resolve its ambiguity?

! Option #1: add meta-rules for precedence and
associativity

! Option #2: modify the grammar to explicitly
resolve the ambiguity

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•P
ar

si
ng

A
•S

lid
e

20

Option #2: strategy

! Create a nonterminal for each precedence level
! Expr is the lowest precedence nonterminal

• Each nonterminal can be rewritten with higher precedence
operator

• Highest precedence operator includes atomic expressions

! At each precedence level use
• Left recursion for left-associative operators

• Right recursion for right-associative operators

• No recursion for non-associative operators

