
CSE401: Lexing

David Notkin

Autumn 2000



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
2

Where are we?

1. Define the tokens for the language using regular expressions
• Natural representation for tokens
• But difficult to produce a scanner from REs

2. Convert the regular expressions into non-deterministic finite state
automata (NFA)

• Straightforward conversion
• Can produce a scanner from NFA, but an inefficient one

3. Convert the NFA into deterministic finite state automata (DFA)
• Straightforward conversion

4. Convert the DFA into an efficient scanner implementation



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
3

Why convert to DFAs?

! Because
• they are equivalent in power to NFAs

• they are deterministic, which makes them a terrific
basis for an efficient implementation of a scanner



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
4

NFA => DFA

! Basic problem
• NFA can choose among alternative paths

– either ε transitions or
– multiple transitions from a state with the same label

• But a DFA cannot have this kind of choice

! Solution: subset construction
• In the newly constructed DFA, each state

represents a set of states in the NFA, all of which
the NFA might be in during its traversal



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
5

Subset construction algorithm
initial step

! Create start state of new DFA
• Label it with the set of NFA states that can be

reached by ε transitions
– That is, without consuming any input

– Think of it as all possible start states in the NFA, since
there could be more than one given ε transitions

! Then process this new start state
• Details in a couple of slides



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
6

In groups (and stay there!)
< 1 minute: start state of the new DFA?

1 2
ε

5
a

3 4
b

a a
a | b

Example from
Crafting a Compiler,
Fischer & LeBlanc



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
7

Subset construction algorithm
processing a state

! To process a state S in the new DFA with label
{s1,…,sn}

! For each symbol x in the alphabet
• Compute the set T of NFA states reached from any of the

NFA states s1,…,sn by an x transition followed by any
number of ε transitions

• If T is not empty
– If there is already a DFA state with T as a label, add a transition

labeled x from S to T
– Otherwise create a new DFA state labeled T, add a transition labeled

x from S to T, and then process T



UW CSE401 AQ 2000 • D. Notkin • All rights reserved • Lexing • Slide 8

Sam
e

groups:
apply

the
algorithm



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
9

Subset construction algorithm
defining final states

! After the algorithm terminates

! Mark every DFA state as final if any of the
NFA states in its label is final



UW CSE401 AQ 2000 • D. Notkin • All rights reserved • Lexing • Slide 10

Sam
e

groups:
m

ark
finalstates



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
11

Subset construction: notes

! It is provable that this works and produces an
equivalent DFA

! This activity can be automated

! Question: What can be said about the number
of states in the DFA relative to the NFA?
• In theory? In practice?



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
12

Minimizing DFAs

! There is also an algorithm for minimizing the
number of states in a DFA

! Given an arbitrary DFA, one can find a unique
DFA with a minimum number of states that is
equivalent to the original DFA
• Except for a renaming of the states

• Essentially, try to merge states



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
13

Constructing scanners from DFAs

! Use a table-driven scanner
! Write disciplined procedures that encode the

DFA
! We’ll talk about both (the first briefly)
! The second approach is used in the PL/0

compiler
• Because it’s generally easier to handle a few

practical issues (and it may be faster)



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
14

Table-driven scanner

! Represent the DFA as an
adjacency matrix
• One row per state

• One column per character in
the alphabet

• Entry is state to transition to

! Mechanically walk the input,
taking appropriate
transitions
• Rules for termination remain

unchanged

{5}

{5}{5}{4,5}

{4,5}{5}{3,4,5}

{3,4,5}{1,2}

ba



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
15

Approach 2: procedural

! Define a procedure for
each state in the DFA

! Use conditionals to
check the input
character and then make
the appropriate
transition

! A transition is a call to
the procedure for the
next state

procedure {3,4,5} begin

if nextChar() == ‘a’

call {5}

elsif nextChar() == ‘b’

call {4,5}

else

reject(“no transition

out of this

state”)

end



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
16

The heart of the PL/0 scanner
it’s not quite as clean (but it’s not bad!)

Token ::= Id |

Integer |

Keyword |

Operator |

Punct

! Where’s the DFA?

! How come five
kinds of tokens and
only three branches?

if (isalpha(CurrentCh)) {

T = GetIdent()

} else if (isdigit(CurrentCh)) {

T = GetInt()

} else {

T = GetPunct();

}



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
17

PL/0’s GetIdent method
In groups, answer these questions

! Is PL/0 case-
sensitive?

! What does
SearchReserved

return?

Token* Scanner::GetIdent() {

char ident[MaxIdLength+1];

int LengthOfId = 0;

while (isalnum(CurrentCh)) {

ident[LengthOfId] =
tolower(CurrentCh);

LengthOfId ++;

GetCh();

}

ident[LengthOfId] = '\0';

return SearchReserved(ident);

}



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
18

PL/0’s GetInt method

Token* Scanner::GetInt() {

int integer = 0;

while (isdigit(CurrentCh)) {

integer = 10 * integer + (CurrentCh - '0');

GetCh();

}

return new IntegerToken(integer);

}



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
19

PL/0’s GetPunct method

Token* Scanner::GetPunct() {

Token* T;

switch (CurrentCh) {

case ':':

GetCh();

if (CondReadCh('=')) {

T = new Token(GETS);

} else {

T = new Token(COLON);

}

break;

case '<':

GetCh();

if (CondReadCh('=')) {

T = new Token(LEQ);

} else if (CondReadCh('>')){

T = new Token(NEQ);

} else {

T = new Token(LSS);

}

break;

…



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
20

A few other notes about the scanner

! There is a Scanner class
• There is only one instance of this class

• This is an example of the Singleton design pattern

! The high-level structure we showed has the scanner
scan before the parser parses
• Study the compiler to figure out what really happens

! Make sure (for this and all other phases) to read the
interface (the .h file) very, very carefully



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
21

Language design issues (lexical)

! Most languages are now free-form
• Layout doesn’t matter
• Use whitespace to separate tokens, if needed
• Alternatives include

– Fortran, Algol68: whitespace is ignored
– Haskell: use layout to imply grouping

! Most languages now have reserved words
• Cannot be used as identifiers
• Alternative: PL/0 has keywords that are treated specially

only in certain contexts, but may be used as identifiers, too



U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
22

Objectives: next lectures

! Understand the theory and practice of parsing

! Describe the underlying language theory of
parsing (CFGs, etc.)

! Understand and be able to perform top-down
parsing

! Understand bottom-up parsing


