
1

CSE401: Lexing

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
2

Objectives for today and tomorrow

! Define overall theory and practical structure of lexical analysis

! Briefly recap regular expressions, finite state machines, and
their relationship
• Even briefer recap of the language hierarchy

! Show how to define tokens with regular expressions

! Show how to leverage this style of token definition in
implementing a lexer

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
3

Lexical analysis (Scanning)

! A token is a group of characters forming basic, atomic chunks
of syntax
• Ex: 17, :=, 3.1415, else, snork, …

! The lexer also removes whitespace
• Whitespace consists of characters between tokens that are ignored

• Ex: spaces, tabs, newlines, comments
– The definition of whitespace varies from language to language

Source
Program

stream
of characters

sequence
of tokensLexical

analysis

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
4

After scanning: syntactic analysis

! The sequence of tokens produced by the scanner is
parsed as part of syntactic analysis

! This separation is followed universally
• Lexing and parsing are theoretically and practically

different activities
– Character stream to token stream vs. token stream to syntax tree

• Scanning is time-consuming in many compilers, largely due
to handling I/O

– By restricting the job of the lexer, a faster implementation is often
feasible

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
5

Overall approach to scanning

1. Define the tokens for the language using regular expressions
• Natural representation for tokens
• But difficult to produce a scanner from REs

2. Convert the regular expressions into non-deterministic finite
state automata (NFA)

• Straightforward conversion
• Can produce a scanner from NFA, but an inefficient one

3. Convert the NFA into deterministic finite state automata
(DFA)

• Straightforward conversion

4. Convert the DFA into an efficient scanner implementation U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
6

Language and automata theory:
a speedy reminder

! Alphabet: a finite set of
symbols

! String: a finite, possibly
empty, sequence of
characters in an alphabet

! Language: a (possibly empty
or infinite) set of strings

! Grammar: a finite
specification of a language
• Even if the language is infinite

! Language automaton: a
machine for accepting a
language and rejecting all
other strings
• A language can be specified

by many different grammars
and automata

• A grammar or automaton
specifies precisely one
language

2

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
7

Definitions

! Lexeme: a group of characters that form a token

! Token: a set of lexemes that match a pattern
• We’ll use regular expressions to define tokens

! A token may have attributes, if the set has more
than a single lexeme
• Ex: integers are a token, but each integer lexeme

must also know its value

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
8

Regular expressions:
a notation for defining tokens

! The syntax of regular expressions
(REs) is defined inductively

! Base cases
• The empty string (ε)
• A symbol from the alphabet

! Inductive cases
• Sequence of two REs: E1E2
• Choice of two REs: E1|E2
• Kleene closure (zero or more

occurrences) of an RE: E*

! Can use parentheses
for grouping

! Precedence
• * (highest)

• sequence
• | (lowest)

! Whitespace is not
significant

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
9

Notational conveniences:
no additional expressive power

! E+ means one or more occurrences of E

! Ek means k occurrences of E

! [E]means zero or one occurrences of E (it’s optional)

! {E}means E*

! not(x) means any character in the alphabet but x

! not(E) means any strings in the alphabet but those
matching E

! E1- E2 means any strings matching E1 except those
matching E2

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
10

Naming regular expressions:
simplify RE definitions

! Can assign names to regular expressions

! Can use these names in the definition of another
regular expression

! Examples
• letter ::= a | b | … | z

• digit ::= 0 | 1 | … | 9

• alphanum ::= letter | digit

! Can eliminate names by macro expansion

! No recursive definitions are allowed! Why?

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
11

Regular expressions for PL/0
Program ::= (Token | White)*

Token ::= Id | Integer | Keyword | Operator | Punct
Punct ::= ; | : | . | , | (|)

Keyword ::= module | procedure | begin | end | const

| var | if | then | while | do | input

| output | odd | int

Operator::= := | * | / | + | - | = | <> | <= | <

| >= | >

Integer ::= Digit*

Id ::= Letter AlphaNum*
AlphaNum::= Letter | Digit
Digit ::= 0 | … | 9

Letter ::= a | … | z | A | … | Z

White ::= <space> | <tab> | <newline> U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
12

Generate scanner from regular
expressions?

! This would be ideal: REs as input to a scanner
generator, and a scanner as output
• Indeed, some tools can mostly do this

! But it’s not straightforward to do this
• One reason is that there is a lot of non-determinism —

choice — that is inherent in regular expressions in general
• Choice can be implemented using recursion, but it’s

generally very inefficient

! In any case, these tools go through a process like the
one we’ll look at

3

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
13

Next steps

! Convert regular expressions to non-
deterministic finite state automata (NFA)

! Then convert the NFA to deterministic finite
state automata (DFA)

! Then convert DFA into code

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
14

Classes of languages

! Regular languages can be
specified by
• regular expressions
• regular grammars
• finite-state automata (FSA)

! Context-free languages (CFL)
can be specified by
• context-free grammars (CFG)
• push-down automata (PDA)

! Turing-computable languages can
be specified by
• arbitrary grammars
• Turing machines

regular
languages

context-free
languages

Turing-computable
languages

Strict inclusion of these classes of languages

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
15

Finite state automata

! A finite set of states
• One marked as the initial state
• One or more marked as final states

! A set of transitions from state to state
• Each transition is marked with a symbol from the alphabet or with ε

! Operate by reading symbols in sequence
• A transition can be taken if it labeled with the current symbol
• An ε-transition can be taken at any point, without consuming a symbol

! Accept if done with input and in a final state
! Reject if no transition can be taken or if input is done and not in

a final state U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
16

DFA vs. NFA

! A deterministic finite state automata (DFA) is
one in which there is no choice of which
transition to take under any condition

! A non-deterministic finite state automata
(NFA) is one in which there is a choice of
which transition to take in at least one situation

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
17

1

0

1

0

01

a
a

b

ε

a

a
a

b

a

a

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
18

Plan of attack

! Convert from regular expressions to NFAs
because there is an easy construction
• However, NFAs encode choice, and choice implies

recursion, and recursion is slow in a scanner

! Convert from NFAs to DFAs, because there is
a well-defined procedure
• And DFAs lay the foundation for an efficient

scanner implementation

4

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
19

Example: in groups
5 minutes

! Consider the language that includes only those
binary strings that have odd parity

! For this language, define
• the alphabet

• a grammar

• an automaton

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
20

Converting REs to NFAs:
base cases

ε

x

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
21

E1E2

εE1 E2

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
22

E1|E2

εE1

E
2 ε

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
23

E*

?

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
24

RE to NFA

! Those rules are sufficient for constructing an
equivalent NFA from a regular expression

5

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
25

Time permitting
in groups

! Define a regular expression that recognizes
comments of the form
• /* … */

• Be careful in defining “…”

! Then convert that regular expression to an NFA

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
L

ex
in

g
•

Sl
id

e
26

Next lecture

! NFA to DFA

! DFA to scanner

