
1

CSE401: Semantic Analysis (D)

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
2

Today

! Miscellaneous issues in type checking

! A status check: where are we, and where are
we going?

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
3

Type checking

! We’ve covered the basic issues in how to check
semantic, type-oriented, properties for the data
types and constructs in PL/0 (and some more)

! But there are other features in languages richer
than PL/0, and we’ll looking at some of them
today

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
4

Records

! Records (or structs) combine heterogeneous
types into a single (usually named) unit

! record R = begin
x : int;
a : array[10] of bool;
m:char;

end record;

var t : R;

… r.x

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
5

Type checking records

! Need to represent record type, including fields
of record

! Need to name user-defined record types

! Need to access fields of record values

! May need to handle unambiguous but not fully
qualified names (depending on language
definition)

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
6

An implementation

! Representing record type using a symbol table for
fields
• class RecordType: public Type {..};

• Create RecordTypeSTE

! To typecheck expr.x
• Typecheck expr

– Error if not record type

• Lookup x in record type’s symbol table
– Error if not found

• Extract and return type of x



2

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
7

Type checking classes or modules

! A class/module is just like a record, except that it can
contain procedures in addition to simple variables

! So they are already supported by using a symbol table
to store record/class/module fields

! Procedures in the class/module can access other fields
of the class/module
• But this is already support by nesting procedures in record

symbol table

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
8

Type equivalence

! When is one type equal to another?
• Implemented in PL/0 with Type::same function

! It’s generally “obvious” for atomic types like int,
string, user-defined types

! What about type constructors like arrays?
• var a1 : array[10] of int;
var a2,a3 : array[10] of int;
var a4 : array[20] of int;
var a5 : array[10] of bool
var a6 : array[0:9] of int;

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
9

Structural equivalence

! Two types are equal if they have the same
structure
• If atomic types, then obviuos

• If type constructors
– Same constructor

– Recursively, equivalent arguments to constructor

! Implement with recursive implementation of
same

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
10

Name equivalence

! Two types are equal if they came from the
same textual occurrence of type constructor

! Implement with pointer equality of Type
instances

! Special case: type synonyms don’t define new
types

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
11

same & different

! class Type {
public:

…
virtual bool same(Type* t) = 0;
bool different(Type* t) { return !same(t); }
…

};
class IntegerType : public Type {
public:

…
bool same(Type* t) { return t->isInteger(); }
…

};

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
12

Implement structural equivalence
details

! Problem: want to dispatch on two arguments, not just
receiver
• That is, choose what method to execute based on more than

the class of the receiver

! Why? There’s a symmetry that the OO dispatch
approach skews
• if (lhs->different(rhs)) {…error…}

! Why not: if (different(lhs,rhs)) {…error…}



3

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
13

Multi-methods

! Languages that support dispatching on more
than one argument provide multi-methods

! For example, they might look like
• virtual bool same(type* t1, type* t2)

{return false;}
• virtual bool same(IntType* t1, IntType* t2)

{return true;}
• virtual bool same(ProcType* t1, ProcType* t2)

{return same(t1->args,t2->args);}

! Different from static overloading in C++

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
14

Overloading: quick reminder

! Overloading arises when the same operator or
function is used to represent distinct operations
• 3 + 4

• 3.14159 + 2.71828

• “mork” + “mindy”

! The compiler statically decides which “+” to
compile to based on the (type) context

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
15

Polymorphism: quick reminder

! Polymorphism is different from overloading

! In overloading the same operator means different
things in different contexts

! In polymorphism, the same operator works on
different types of data
• (length ‘(a b c)) vs. (length ‘((a) (b c) 3 4))

• (sort ‘(4 1 2)) vs. (sort ‘(c g a))

! In polymorphism, the compiler compiles the same
code regardless

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
16

But C++ has no multi-methods:
So we can use double dispatching

class Type {
virtual bool same(Type* t2) = 0;
virtual bool sameAsInteger(IntegerType* t1) {

return false;}
virtual bool sameAsProc(ProcType* t1) {

return false;}
};
class IntegerType : public Type {

bool same(Type* t2) {
return t2->sameAsInteger(this);}

bool sameAsInteger(IntegerType* t1) {
return true;}

};

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
17

Type conversions and coercions

! In C, can explicitly convert data of type float
to data of type int (and some other examples)
• Represent it explicitly as a unary operator
• Type checking and code generation work as normal

! In C, can also implicitly coerce
• System must insert unary conversion operators as

part of type checking
• Code generation works as normal

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
18

Type casts

! In C and Java (and some other languages) can
explicitly cast an object of one type to another
• Sometimes a cast means a conversion (e.g., casts

between numeric types)

• Sometimes a cast means just a change of static type
without any computation (e.g., casts between point
types)



4

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
19

Safety of casting

! In C, the safety of casts is not checked
• That is, it’s possible to convert into a representation that is

illegal for the new type of data
• Allows writing of low-level code that’s type-unsafe
• More often used to work around limitations in C’s static

type system

! In Java, downcasts from superclass to subclass include
a run-time type check to preserve type safety
• This is the primary place where Java uses dynamic type

checking

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
20

Where are we?

! We now know, in principle, how to
1. take a string of characters

2. convert it into an AST with associated symbol
table

3. and know that it represents a legal source
program (including semantic checks)

! That is the complete set of responsibilities (at a
high-level) of the front-end of a compiler

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
21

Normally…

! …we’d now take a break for a mid-term exam

! But because of my travel schedule, we’ll delay the mid-term
for two weeks

! Arguably, this is better because you’ll have more
implementation experience with the front-end by then

! Arguably, this is worse because you’ll forget what was in the
lectures and the book

! Unarguably, the mid-term will be Wednesday November 8th,
with a review on Monday November 6th

• You’ll be voting on the 7th, too

U
W

C
SE

40
1

A
Q

20
00

•D
.N

ot
ki

n
•A

ll
ri

gh
ts

re
se

rv
ed

•S
em

an
ti

cs
D

•S
lid

e
22

Next…

! …what to do now that we have this wonderful AST
representation

! We’ll look mostly at interpreting it or compiling it
• But you could also analyze it for program properties

• Or you could “unparse” it to display aspects of the program
on the screen for users

• …


