
1

CSE401: Introduction to
Compiler Construction

David Notkin

Autumn 2000

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
2

Today’s objectives

! Defining compilers and why we study them

! Defining the high-level structure of compilers

! Associating specific tasks, theories, and
technologies with achieving the different
structural elements of a compiler
• And building some initial intuition about why these

are needed

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
3

What is a compiler?

Compiler

Executable CodeSource Code

! A software tool that translates
• a program in source code form to
• an equivalent program in an executable (target) form

! Converts from a form good for people to a form good for
computers

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
4

Examples
! Source languages

• Java

• C

• ML

• COBOL

• …

! Target architectures
• MIPS

• x86

• SPARC

• Alpha

• …

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
5

Why study compilers?

! In groups (of 3-5 people), list as many reasons
as you can in one minute

• I’m going to try to do a significant amount of active
learning in this course

• We’ll all need to practice, but the benefits should be real

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
6

CSE401’s project-oriented
approach

! Start with a compiler for PL/0, written in C++
! We define additional language features

• Such as comments, arrays, call-by-reference
parameters, result-returning procedures, for loops,
etc.

! You modify the compiler to translate the
extended PL/0 language
• Project completed in well-defined stages



2

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
7

More on the project

! Strongly recommended
that you work in two-
person teams for the
quarter

! Grading based on
• correctness

• clarity of design and
implementation

• quality of testing

! Provides experience
with object-oriented
design and with C++

! Provides experience
with working on a team

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
8

Break into groups

! I will present a small program to you, character by
character

! In 5 minutes, each group will identify problems that
you can see that you will encounter in compiling this
program

! Here’s an example problem
• When we see a character ’1’ followed by a character ’7’,

we have to convert it to the integer 17.

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
9

1. i
2. n

3. t
4. �
5. i

6. ;
7. �
8. i
9. :

10. =

11. 1
12. 7

13.�
14. ;
15. p

16. r
17. i
18. n
19. t

20. (

21. i
22. *

23. i
24. )
25. ;

• � is the space
character

� This is not a
PL/0 program!

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
10

Structure of compilation

! A common compiler structure has been defined
• Years and years of deep, difficult research intermixed with

building of thousands of compilers

! Actual compilers often differ from this prototypical
model
• The primary differences are the ordering and the clarity with

which the pieces are actually separated
• But the model is still extremely useful

! You will see the structure — to a large degree — in
the PL/0 compiler

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
11 Source

Program
stream

of characters

sequence
of tokens

Lexical analysis

abstract syntax
tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Code generation

Executable
code

Target
Program

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
12

Front- and back-end

! These parts of the compiler structure are often split
into two categories

! The front-end
• Focuses on (repeated) analysis

• Determines what the program is

! The back-end
• Focuses on synthesis

• Produces the target program that is equivalent to the source
program



3

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
13

An example compilation
module main;

var x:int, result: int;
procedure square(n:int);
begin

result := n*n;
end square;

begin

x := input;
while x <> 0 do
square(x);

output := result;
x := input;

end;
end main.

! A real PL/0 program

! We’ll step through
• Lexical analysis

• Syntactic analysis

• Semantic analysis

• Storage layout

• Code generation

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
14

Lexical analysis
(AKA scanning and tokenizing)

! Read in characters and
clump them into tokens
• Also strip out white space and

comments

! Use regular expressions to
specify tokens

! Use finite state machines to
scan

! Remember the connection
between regular expressions
and finite state machines

Ident ::= Letter AlphaNum*
Integer ::= Digit+
AlphaNum ::= Letter | Digit

Letter ::= ’a’|…|’z’|…|
’A’|…|’Z’

Digit ::= ’0’|…|’9’

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
15

Syntactic analysis
(AKA parsing)

! Turn token stream into tree
based on the program’s
syntactic structure

! Define syntax using context
free grammar (CFG)
• EBNF is a common notation

for defining concrete syntax
– Cares about semi-colons and

such

• Parser usually constructs AST
representing abstract syntax

– Cares about statement
structures and such

Stmt ::= Astmt | IfStmt | …
Astmt ::= Lvalue := Expr ;

Lvalue ::= Id

IfStmt ::= if Test then Stmt
[else Stmt] ;

Test ::= Expr = Expr |

Expr < Expr | …
Expr ::= Term + Term |

Term – Term | Term
Term ::= Factor * Factor |

… | Factor

Factor ::= - Factor | Id |
Int | ( Expr )

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
16

Semantic analysis
(Name resolution and type checking)

! Given AST
• figure out what declaration each name refers to

• perform static consistency checks

! Key data structure: symbol table
• maps names to information about name derived from declaration

! Semantic analysis steps
• Process each scope, top down

• Process declarations in each scope into symbol table for scope

• Process body of each scope in context of symbol table

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
17

Storage layout

! Given symbol table, determine how and where variables will be
stored at runtime

! What representation is used for each kind of data?

! How much space does each variable require?

! In what kind of memory should it be placed?
• static, global memory

• stack memory

• heap memory

! Where in memory should it be placed?
• e.g., what stack offset?

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
18

Code generation

! Given annotated AST and symbol table, produce
target code

! Often done as three steps
• Produce machine-independent low-level representation of

the program (intermediate representation or IR)

• Perform machine-independent optimizations (optional)

• Translate IR into machine-specific target instructions
– Instruction selection

– Register allocation



4

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
19

Compilers vs. interpreters

! Compilers implement languages by translation
! Interpreters implement languages directly
! Note: the line is not always crystal-clear
! Compilers and interpreters have tradeoffs

• Execution speed of program
• Start-up overhead, turn-around time
• Ease of implementation
• Programming environment facilities
• Conceptual clarity

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
20

Engineering issues in compiling

! Portability
• Ideal is multiple front-ends and multiple back-ends

with a shared intermediate language

! Sequencing phases of compilation
• Stream-based vs. syntax-directed

! Multiple, separate passes vs. fewer, integrated
passes

! How to avoid compiler bugs?

U
W

C
SE

40
1

A
Q

20
00

•
D

.N
ot

ki
n

•
A

ll
ri

gh
ts

re
se

rv
ed

•
In

tr
od

uc
ti

on
•

Sl
id

e
21

Objectives: next lecture

! Define overall theory and practical structure of lexical
analysis

! Briefly recap regular expressions, finite state
machines, and their relationship
• Even briefer recap of the language hierarchy

! Show how to define tokens with regular expressions

! Show how to leverage this style of token definition in
implementing a lexer


