
A Short Tutorial on Bottom-Up Parsing

Mark Seigle (seigle@cs.washington.edu)

October 16, 2000

1 Intro

We will be using the following grammar G:
0 : S0 ! S$
1 : S ! (L)
2 : S ! x

3 : L! S

4 : L! L; S

G generates strings with sequences of matching parens around one or more x's, i.e. ((x)); (((x))); x;
and (x; (x)) 2 G. The dollar sign signi�es the end of input. Recall that LR(k) stands for Left-to-

right parse, Rightmost-derivation, k-token lookahead.
We discussed the basics of bottom-up/shift-reduce parsing in class but we didn't answer the

question as to how the parser knows when to shift and when to reduce! We need a criteria for the
parser to choose when to shift or reduce. The criteria comes from regular expressions which serve
as handles or equivalently a DFA.

2 Building the Table

LR(0) parsers operate without any look ahead|that is they operate just by looking at what is on
the stack. For some string of terminals and non-terminals, we represent the stack and our position
on the stack as follows: ���w, we use � to divide the stack into two halves. All elements to the
left of the � are visible on the stack, all elements to the right of the � haven't been shifted onto the
stack. The sequence ��w is a sequence of terminals and non-terminals. We showed in class that
everything to the right of the � has to be a terminal.

At �rst our parser's stack is empty and the remaining input forms our S and $. In production
0, this would look like S0 ! �S$. Now we can begin constructing our states of the DFA. Since we
have a � followed by an S, we can expand the productions of S and precede them with a �. Basically
what this corresponds to are all of the possible ways to parse the initial input.

S0 ! �S$
S ! �x

S ! �(L)

1

The superscripted number represents the state number. Now let's consider the possibilities
while we're in state 1. If we shift an x, we indicate that by shifting the dot past the x in the S ! x

production. The other rules in state 1 don't have anything to do with x's, so we ignore them.

S ! x�

2

1

Another possibility in state 1 is to see a left paren. We should shift the left paren S ! (�L).
We know that we're eventually going to see a string derived by L and then a right paren. Just as
we did for state 1, when we had a � before a S, we had to include all of S's productions, we have
to include all of L's productions.

S ! (�L)
L! �L; S

L! �S

L! �(L)
S ! �x

3

The �nal possibility in state 1 is to somehow read an S and shift the stack to S � $. This is
a somewhat special condition, as we know that we've �nished parsing a production. When we
construct the table for the DFA, this state will have a goto action.

To build a parser from a grammar, we need an algorithmic method to construct the states
we've previously been hand-waving through. The procedure closure(I) takes care of adding the
necessary productions to a state. goto (I, X) for some set of productions in a state I, and some
symbol X, goto moves the dot past X in all of the elements of I.

closure (I) =

repeat

for any item A! � � � in I
for any production X !

I I [fX ! �
g
until I does not change.
return I

goto (I;X) =

set J to the empty set
for any item A! � �X� in I
add A! �X � � to J

return closure(J)

Now we can construct a set of states T and edges E for our DFA. We'll use the notation
x
! to

indicate an edge in our DFA we would follow upon reading an x.

Initialize T to fclosure(fS0 ! �S$g)
Initialize E to empty
repeat

for each state I in T
for each item A! � � X� in I
let J be goto(I;J)
T T [fJg

E E [fI
X
! Jg

until E and T did not change in this iteration

So far we still haven't talked about reducing! We can now compute in which states we should
reduce. Let R be a set of states � productions.

2

S' ---> . S $
S ---> . (L)
S ---> . x

1 2
S' ---> x .x

S' ---> S . $

S

4

S ---> (. L)
L ---> . S
L ---> . L, S
S ---> . (L)
S ---> . x

x

(

L ---> S .

3

 (

4

S

S ---> (L .)
L ---> L . , S

S ---> (L) .

L ---> L, . S
S ---> . (L)
S ---> . x

x

(
,

)

L

S ---> (L) .

8

9

6

5

S

Figure 1: The completed DFA for our grammar

0 () x , $ S L

1 s3 s2 g4
2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

Figure 2: The parsing table for our grammar

R fg
for each state I in T
for each item A! �� in I
R R [f(I;A! �)g

Now we can construct a table for our parse. For each edge I
X
! J where X is a terminal, we put

the action shift J at position (I;X) of the table, if X is a non-terminal, we put goto J at position
(I;X). For any state containing S0 ! S � $, we put an accept action at (I; $). And for any state
containing A!
�, we put a reduce action at (I; Y) for every token Y .

What if we get a shift and reduce in the same entry in the DFA? Then the grammar isn't
LR(0). You can manually correct the con
ict and in doing so are creating some precedence rules.
For simple cases, hacking the precedence is �ne (and sometimes very useful), however for large
complex grammars, it is best to use a more general parsing strategy like LR(1), SLR, or LALR.
See your book for more info.

3 Acknowledgments

This document borrows heavily from Andrew Appel's \Modern Compiler Implementation in C".
The examples here are identical to those in the book in the hopes that fewer errors would appear.

3

