Decimal and binary representation systems

- They both are *position*al representation systems
- In decimal numbers are represented by the coefficients of the powers of 10
 - Example: \(321 = 3 \cdot 10^2 + 2 \cdot 10^1 + 1 \cdot 10^0\)
- Decomposing 321 in powers of 2 yields \(321 = 256 + 64 + 1\)
 - or \(1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0\)
 - or \(101000001_2\)

Positional number systems

- More generally, a positive integer is represented in
 - decimal by \(\sum_{i=0}^{n} a_i \times 10^{n-i}\) where the \(a_i\) are between 0 and 9
 - binary by \(\sum_{i=0}^{n} b_i \times 2^{n-i}\) where the \(b_i\) are 0 or 1
Binary and Hexadecimal representation systems

• Writing binary numbers quickly becomes error-prone and unwieldy
• Instead use hexadecimal system, positional representation system in base 16
 – Example: $321 = 1 \cdot 16^2 + 4 \cdot 16^1 + 1 \cdot 16^0 = 141_{16}$
• Since the coefficients are between 0 and 15, we need new symbols to represent 10 through 15. They will be A through F
 – A (hex) = 10 (decimal) = 1010 (binary)
 – B (hex) = 11 (decimal) = 1011 (binary) ...
 – F (hex) = 15 (decimal) = 1111 (binary)

Conversion between binary and hexadecimal

• Group bits (abbreviation for binary digits) by groups of four, starting from the right (least significant bit or lsb)
 – Example: $10100001 = 1 \ 0100 \ 0001$ (binary) = 141 (hex)
 – $111001011 = 1 \ 1100 \ 1011$ (binary) = $1CB$ (hex)
 – Note that the greatest magnitude bit, the leftmost one, is called (most significant bit or msb)
• Why hexadecimal?
 – Very convenient to represent strings of 4, 8, …, 16, …, 32, …, 64 bits by 1, 2, …, 4, …, 8, …, 16 hex digits
Some useful powers of two

\[2^{10} = 1024, 10^3 = 1K \]
\[2^{20} \approx 10^6 = 1M \]
\[2^{30} \approx 10^9 = 1G \]

- We’ll often round-off and talk about, say, 16 KB or 64 MB

Representing positive and negative integers

- In an \(n \)-bit register, you can represent \(2^n \) patterns
 - Example: in a 32-bit register, we can represent \textit{unsigned integers} in the range \([0:2^{32}-1]\)
- How to represent positive \textbf{and} negative integers with the following properties:
 - Equal number of positive and negative numbers
 - Unique (and easily testable) representation of zero
 - Easy sign test
 - Easy rules for addition and subtraction
Three representation systems

• Historically, 3 different numbering systems have been used
 – **Two’s complement** now used in all machines for integer representation
 – sign and magnitude used (partially) for floating-point representation
 – One’s complement (very similar to 2’s complement but with a few more drawbacks)

Two’s complement representation

• Positive numbers as unsigned binary with msb always 0
• Zero is represented as a string of 0’s
• To represent a negative number:
 – Consider the representation of its absolute value
 – Flip all 1’s to 0’s and 0’s to 1’s (this is 1’s complement)
 – Add 1 to lsb using binary arithmetic rules
2’s complement

- Example assuming a 4-bit register
 - What is the representation of (decimal) 6?
 - What is the representation of (decimal) -6?
 - What is the representation of 0?
 - What is the range of representation of positive numbers?
 - What is the range of representation of negative numbers?
 - How do I recognize whether a number is positive or negative or zero?

Addition in 2’s complement

- Addition
 - Perform an ordinary binary addition and discard the carry-out
 - If you add 2 numbers of opposite sign, everything will always be all right
 - If you add two positive numbers and the result appears to be negative (i.e., msb = 1) then you have an overflow. This will generate an exception in your program.
 - If you add two negative numbers and the result appears to be positive (i.e., msb = 0) then you have an underflow.

- Subtraction
 - Take the 2’s complement of the subtrahend and add it to the other operand