MIPS History

- MIPS is a computer family
 - R2000/R3000 (32-bit)
 - R4000/4400 (64-bit)
 - R10000 (64-bit) and others
- MIPS originated as a Stanford research project under the direction of John Hennessy
 - Microprocessor without Interlocked Pipe Stages
- MIPS Co. bought by SGI
- MIPS in DEC (now Compaq) workstations
- **MIPS is a RISC**

ISA MIPS Registers

- Thirty-two 32-bit registers $0, 1, …, 31$ used for
 - integer arithmetic; address calculation; temporaries; special-purpose functions (stack pointer etc.)
- A 32-bit Program Counter (PC)
- Two 32-bit registers (HI, LO) used for mult. and division
- Thirty-two 32-bit registers $f0, f1, …, f31$ used for floating-point arithmetic
 - Often used in pairs: 16 64-bit registers
- Registers are a major part of the "state" of a process
MIPS Register names and conventions

<table>
<thead>
<tr>
<th>Register</th>
<th>Name</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>Zero</td>
<td>Always 0</td>
<td>No-op on write</td>
</tr>
<tr>
<td>$1</td>
<td>$at</td>
<td>Reserved for assembler</td>
<td>Don't use it</td>
</tr>
<tr>
<td>$2-3</td>
<td>$v0-v1</td>
<td>Expr., funct., return</td>
<td></td>
</tr>
<tr>
<td>$4-7</td>
<td>$a0-a3</td>
<td>Proc., func. parameters</td>
<td></td>
</tr>
<tr>
<td>$8-15</td>
<td>$t0-t7</td>
<td>Temporaries, volatile</td>
<td>Not saved on proc. Calls</td>
</tr>
<tr>
<td>$16-23</td>
<td>$s0-s7</td>
<td>Temporaries</td>
<td>Should be saved on calls</td>
</tr>
<tr>
<td>$24-25</td>
<td>$a8-a9</td>
<td>Temporaries, volatile</td>
<td>Not saved on proc. Calls</td>
</tr>
<tr>
<td>$26-27</td>
<td>$s8-s15</td>
<td>Reserved for O.S</td>
<td>Don't use them</td>
</tr>
<tr>
<td>$28</td>
<td>$sp</td>
<td>Pointer to global static memory</td>
<td></td>
</tr>
<tr>
<td>$29</td>
<td>$fp</td>
<td>Stack pointer</td>
<td></td>
</tr>
<tr>
<td>$30</td>
<td>$lip</td>
<td>Frame pointer</td>
<td></td>
</tr>
<tr>
<td>$31</td>
<td>$ra</td>
<td>Proc./func. return address</td>
<td></td>
</tr>
</tbody>
</table>

MIPS = RISC = Load-Store architecture

- Every operand must be in a register
 - Except for some small integer constants that can be in the instruction itself (see later)
- Variables have to be **loaded** in registers
- Results have to be **stored** in memory
- Explicit Load and Store instructions are needed because there are many more variables than the number of registers
Example

• The HLL statements

 \[
 a = b + c \\
 d = a + b
 \]

• will be “translated” into assembly language as:

 load b in register rx
 load c in register ry
 rz ← rx + ry
 store rz in a
 rt ← rz + rx
 store rt in d

MIPS Information units

• Data types and size:

 – Byte
 – Half-word (2 bytes)
 – Word (4 bytes)
 – Float (4 bytes; single precision format)
 – Double (8 bytes; double-precision format)

• Memory is byte-addressable

• A data type must start at an address evenly divisible by its size (in bytes)

• In little-endian environment, the address of a data type is the address of its lowest byte
Addressing of Information units

- Byte address 0
- Half-word address 0
- Word address 0
- Byte address 2
- Half-word address 2
- Word address 8
- Byte address 8
- Half-word address 8
- Word address 8

SPIM Convention

Words listed from left to right but little endianness within words

```
[0x7ffebe0d] 0x000000018 0x00000001 0x00000005 0x00010aff
```

- Byte 7ffebe0d
- Word 7ffebe4
- Half-word 7ffebe0e
Assembly Language programming or
How to be nice to your TA

- Use lots of detailed comments
- Don’t be too fancy
- Use lots of detailed comments
- Use words (rather than bytes) whenever possible
- Use lots of detailed comments
- Remember: The address of a word is evenly divisible by 4
- Use lots of detailed comments
- The word following the word at address i is at address $i+4$
- Use lots of detailed comments

MIPS Instruction types

- Few of them (RISC philosophy)
- Arithmetic
 - Integer (signed and unsigned); Floating-point
- Logical and Shift
 - work on bit strings
- Load and Store
 - for various data types (bytes, words, …)
- Compare (of values in registers)
- Branch and jumps (flow of control)
 - Includes procedure/function calls
Notation for SPIM instructions

- Opcode rd, rs, rt
- Opcode rt, rs, immed
- where
 - rd is always a destination register (result)
 - rs is always a source register (read-only)
 - rt can be either a source or a destination (depends on the opcode)
 - immed is a 16-bit constant (signed or unsigned)

Arithmetic instructions in SPIM

- Don’t confuse the SPIM format with the “encoding” of instructions that we’ll see soon

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Operands</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>rd,rs,rt</td>
<td>#rd = rs + rt</td>
</tr>
<tr>
<td>Addi</td>
<td>rt,rs,immed</td>
<td>#rt = rs + immed</td>
</tr>
<tr>
<td>Sub</td>
<td>rd,rs,rt</td>
<td>#rd = rs - rt</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Source(s)</th>
<th>Destination(s)</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>$8,$9,$10</td>
<td>#$8=$9+$10</td>
<td></td>
</tr>
<tr>
<td>Add</td>
<td>$t0,$t1,$t2</td>
<td>#$t0=$t1+$t2</td>
<td></td>
</tr>
<tr>
<td>Sub</td>
<td>$s2,$s1,$s0</td>
<td>#$s2=$s1-$s0</td>
<td></td>
</tr>
<tr>
<td>Addi</td>
<td>$a0,$t0,20</td>
<td>#$a0=$t0+20</td>
<td></td>
</tr>
<tr>
<td>Addi</td>
<td>$a0,$t0,-20</td>
<td>#$a0=$t0-20</td>
<td></td>
</tr>
<tr>
<td>Addi</td>
<td>$t0,$0,0</td>
<td>#clear $t0</td>
<td></td>
</tr>
<tr>
<td>Sub</td>
<td>$t5,$0,$t5</td>
<td>#$t5 = -$t5</td>
<td></td>
</tr>
</tbody>
</table>

Integer arithmetic

- Numbers can be *signed* or *unsigned*
- Arithmetic instructions (+, -, *, /) exist for both signed and unsigned numbers (differentiated by Opcode)
 - Example: Add and Addu
 Addi and Addiu
 Mult and Multu
- Signed numbers are represented in 2’s complement
- For Add and Subtract, computation is the same but
 - Add, Sub, Addi cause exceptions in case of *overflow*
 - Addu, Subu, Addiu don’t
How does the CPU know if the numbers are signed or unsigned?

- It does not!
- **You do**
- You have to tell the machine by using the right instruction (e.g. Add or Addu)