Control Unit (single cycle implementation)

- Control unit sends control signals to data path depending
 - on the opcode (and function field)
 - results in the ALU (for example for Zero test)
- These signals control
 - muxes; read/write enable for registers and memory etc.
- Some “control” comes directly from instruction
 - register names
- Some actions are performed at every instruction so no need for control (in this single cycle implementation)
 - incrementing PC by 4; reading instruction memory for fetching next inst.

Building the control unit

- Decompose the problem into
 - Data path control
 - ALU control
- Setting of control lines by control unit totally specified in the ISA
 - for ALU by opcode + function bits if R-R format
 - for register names by instruction
 - for reading/writing memory and writing register by opcode
 - muxes by opcode
 - PC by opcode + result of ALU
Implementation

- Input: opcode
- Output: setting of control lines
- Can be done by logic equations
- If not too many, like in RISC machines
 - Use of PAL’s (cf. CSE 370).
 - In RISC machines the control is “hardwired”
- If too large (too many states etc.)
 - Use of microprogramming (a microprogram is a hardwired program that interprets the ISA)
- Or use a combination of both techniques (Pentium)

Where are control signals needed (cf. Figure 5.17)

- Register file
 - Register write signal (R-type, Load)
 - Register destination signal (rd for R-type, rt for Load)
- ALU
 - What kind of second operand (register or immediate)
 - What kind of function (ALU control)
- Data memory
 - Read or write?
 - Control of what is written in result register (from ALU or memory)
- Branch control
 - PC modification if branch is taken
How are the control signals asserted (cf. Fig 5.19)

- Decoding of the opcode by control unit yields
 - Control of the 3 muxes (regdest, ALU 2nd source, source of register write): 3 control lines
 - Signals for register write, read/write of data memory: 3 control lines
 - Signals to activate ALU control (e.g., restrict ourselves to 2)
 - Signal for branch (1 control line)
 - decoding of opcode ANDed with ALU zero result
- Input Opcode: 6 bits
- Output 9 control lines (see Figure 5.27)