Lectures 24-25

- Parallelism
Pipelining vs. Parallel processing

- In both cases, multiple “things” processed by multiple “functional units”

 Pipelining: each thing is broken into a sequence of pieces, where each piece is handled by a different (specialized) functional unit

 Parallel processing: each thing is processed entirely by a single functional unit

- We will briefly introduce the key ideas behind parallel processing
 - instruction level parallelism
 - data-level parallelism
 - thread-level parallelism
Exploiting Parallelism

- Of the computing problems for which performance is important, many have inherent parallelism

- Best example: computer games
 - Graphics, physics, sound, AI etc. can be done separately
 - Furthermore, there is often parallelism within each of these:
 - Each pixel on the screen’s color can be computed independently
 - Non-contacting objects can be updated/simulated independently
 - Artificial intelligence of non-human entities done independently

- Another example: Google queries
 - Every query is independent
 - Google is read-only!!
Parallelism at the Instruction Level

```
add $2 <- $3, $4
or $2 <- $2, $4
lw $6 <- 0($4)
addi $7 <- $6, 0x5
sub $8 <- $8, $4
```

Dependencies?

```
add $2 <- $3, $4
or $5 <- $2, $4
lw $6 <- 0($4)
sub $8 <- $8, $4
addi $7 <- $6, 0x5
```

When can we reorder instructions?

When should we reorder instructions?

```
add $2 <- $3, $4
or $5 <- $2, $4
lw $6 <- 0($4)
sub $8 <- $8, $4
addi $7 <- $6, 0x5
```

Surperscalar Processors:
Multiple instructions executing in parallel at *same* stage
0oO Execution Hardware
Consider adding together two arrays:

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0; i < length; ++i) {
        C[i] = A[i] + B[i];
    }
}
```

Operating on one element at a time
Consider adding together two arrays:

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0; i < length; ++i) {
        C[i] = A[i] + B[i];
    }
}
```

Operating on one element at a time
Exploiting Parallelism at the Data Level (SIMD)

- Consider adding together two arrays:

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0; i < length; ++i) {
        C[i] = A[i] + B[i];
    }
}
```

Operate on MULTIPLE elements

Single Instruction,
Multiple Data (SIMD)
Intel SSE/SSE2 as an example of SIMD

- Added new 128 bit registers (XMM0 - XMM7), each can store
 - 4 single precision FP values (SSE) \(4 \times 32b \)
 - 2 double precision FP values (SSE2) \(2 \times 64b \)
 - 16 byte values (SSE2) \(16 \times 8b \)
 - 8 word values (SSE2) \(8 \times 16b \)
 - 4 double word values (SSE2) \(4 \times 32b \)
 - 1 128-bit integer value (SSE2) \(1 \times 128b \)

\[
\begin{array}{cccc}
4.0 \text{ (32 bits)} & 4.0 \text{ (32 bits)} & 3.5 \text{ (32 bits)} & -2.0 \text{ (32 bits)} \\
+ & -1.5 \text{ (32 bits)} & 2.0 \text{ (32 bits)} & 1.7 \text{ (32 bits)} & 2.3 \text{ (32 bits)} \\
& 2.5 \text{ (32 bits)} & 6.0 \text{ (32 bits)} & 5.2 \text{ (32 bits)} & 0.3 \text{ (32 bits)}
\end{array}
\]
Is it always that easy?

- Not always... a more challenging example:

```c
unsigned
sum_array(unsigned *array, int length) {
    int total = 0;
    for (int i = 0 ; i < length ; ++ i) {
        total += array[i];
    }
    return total;
}
```

- Is there parallelism here?
We first need to restructure the code

```c
unsigned
sum_array2(unsigned *array, int length) {
    unsigned total, i;
    unsigned temp[4] = {0, 0, 0, 0};
    for (i = 0; i < length & ~0x3; i += 4) {
        temp[0] += array[i];
        temp[1] += array[i+1];
        temp[2] += array[i+2];
        temp[3] += array[i+3];
    }
    for (; i < length; ++i) {
        total += array[i];
    }
    return total;
}
```
Then we can write SIMD code for the hot part

```c
unsigned
sum_array2(unsigned *array, int length) {
    unsigned total, i;
    unsigned temp[4] = {0, 0, 0, 0};
    for (i = 0 ; i < length & ~0x3 ; i += 4) {
        temp[0] += array[i];
        temp[1] += array[i+1];
        temp[2] += array[i+2];
        temp[3] += array[i+3];
    }
    for ( ; i < length ; ++ i) {
        total += array[i];
    }
    return total;
}
```
Thread level parallelism: Multi-Core Processors

- Two (or more) complete processors, fabricated on the same silicon chip
- Execute instructions from two (or more) programs/threads at the same time

IBM Power5
Multi-Cores are Everywhere

Intel Core Duo in Macs, etc.: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric multi-core with 9 cores (1 general-purpose, 8 special purpose SIMD processors)
Why Multi-cores Now?

- Number of transistors we can put on a chip growing exponentially...
... and performance growing too...

- But power is growing even faster!!
 - Power has become limiting factor in current chips
As programmers, do we care?

- What happens if we run a program on a multi-core?

```c
void
array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0; i < length; ++i) {
        C[i] = A[i] + B[i];
    }
}
```
What if we want a program to run on both processors?

- We have to explicitly tell the machine exactly how to do this
 - This is called parallel programming or concurrent programming

- There are many parallel/concurrent programming models
 - We will look at a relatively simple one: fork-join parallelism
 - In CSE 303, you saw a little about threads and explicit synchronization
Fork/Join Logical Example

1. Fork N-1 threads
2. Break work into N pieces (and do it)
3. Join (N-1) threads

```c
void array_add(int A[], int B[], int C[], int length) {
    cpu_num = fork(N-1);
    int i;
    for (i = cpu_num ; i < length ; i += N) {
        C[i] = A[i] + B[i];
    }
    join();
}
```

How good is this with caches?
How does this help performance?

- Parallel **speedup** measures improvement from parallelization:

 \[
 \text{speedup}(p) = \frac{\text{time for best serial version}}{\text{time for version with } p \text{ processors}}
 \]

- What can we realistically expect?
Reason #1: Amdahl’s Law

- In general, the whole computation is not (easily) parallelizable
Reason #1: Amdahl’s Law

- Suppose a program takes 1 unit of time to execute serially.
- A fraction of the program, s, is inherently serial (unparallelizable).

\[
\text{New Execution Time} = \frac{1-s}{p} + s
\]

- For example, consider a program that, when executing on one processor, spends 10% of its time in a non-parallelizable region. How much faster will this program run on a 3-processor system?

\[
\text{New Execution Time} = \frac{.9T}{3} + .1T = \text{Speedup} =
\]

- What is the maximum speedup from parallelization?
Reason #2: Overhead

```c
void array_add(int A[], int B[], int C[], int length) {
    cpu_num = fork(N-1);
    int i;
    for (i = cpu_num ; i < length ; i += N) {
        C[i] = A[i] + B[i];
    }
    join();
}
```

— Forking and joining is not instantaneous
 • Involves communicating between processors
 • May involve calls into the operating system
 — Depends on the implementation

\[
\text{New Execution Time} = \frac{1-s}{P} + s + \text{overhead}(P)
\]
Programming Explicit Thread-level Parallelism

- As noted previously, the programmer must specify how to parallelize
 - But, want path of least effort

- Division of labor between the Human and the Compiler
 - Humans: good at expressing parallelism, bad at bookkeeping
 - Compilers: bad at finding parallelism, good at bookkeeping

- Want a way to take serial code and say “Do this in parallel!” without:
 - Having to manage the synchronization between processors
 - Having to know a priori how many processors the system has
 - Deciding exactly which processor does what
 - Replicate the private state of each thread

- OpenMP: an industry standard set of compiler extensions
 - Works very well for programs with structured parallelism.
Performance Optimization

- Until you are an expert, first write a working version of the program.
- Then, and only then, begin tuning, first collecting data, and iterate.
 – Otherwise, you will likely optimize what doesn’t matter.

“We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.” -- Sir Tony Hoare
Two GNU tools integrated into the GCC C compiler

Gprof: The GNU profiler

- Compile with the `-pg` flag
 - This flag causes gcc to keep track of which pieces of source code correspond to which chunks of object code and links in a profiling signal handler.
- Run as normal; program requests the operating system to periodically send it signals; the signal handler records what instruction was executing when the signal was received in a file called `gmon.out`
- Display results using `gprof` command
 - Shows how much time is being spent in each function.
 - Shows the calling context (the path of function calls) to the hot spot.
Example gprof output

Each sample counts as 0.01 seconds.

<table>
<thead>
<tr>
<th>% cumulative</th>
<th>self</th>
<th>self</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>seconds</td>
<td>seconds</td>
<td>calls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>s/call</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>s/call</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>name</td>
</tr>
<tr>
<td>81.89%</td>
<td>4.16</td>
<td>4.16</td>
<td>37913758</td>
</tr>
<tr>
<td>16.14%</td>
<td>4.98</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>1.38%</td>
<td>5.05</td>
<td>0.07</td>
<td>6254582</td>
</tr>
<tr>
<td>0.59%</td>
<td>5.08</td>
<td>0.03</td>
<td>1428644</td>
</tr>
<tr>
<td>0.00%</td>
<td>5.08</td>
<td>0.00</td>
<td>711226</td>
</tr>
<tr>
<td>0.00%</td>
<td>5.08</td>
<td>0.00</td>
<td>256830</td>
</tr>
</tbody>
</table>

Over 80% of time spent in one function

Provides calling context (main calls sim_main calls cache_access) of hot spot

<table>
<thead>
<tr>
<th>index</th>
<th>% time</th>
<th>self</th>
<th>children</th>
<th>called</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>100.0%</td>
<td>0.82</td>
<td>4.26</td>
<td>1/1</td>
<td>main [2]</td>
</tr>
<tr>
<td></td>
<td>4.18%</td>
<td>0.07</td>
<td>36418454/36484188</td>
<td>1</td>
<td>sim_main [1]</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td>0.01</td>
<td>10/10</td>
<td></td>
<td>cache_access <cycle 1> [4]</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td>0.00</td>
<td>2935/2967</td>
<td></td>
<td>sys_syscall [9]</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td>0.00</td>
<td>2794/2824</td>
<td></td>
<td>mem_translate [16]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mem_newpage [18]</td>
</tr>
</tbody>
</table>
Gprof didn’t give us information on where in the function we were spending time. (cache_access is a big function; still needle in haystack)

Gcov: the GNU coverage tool
- Compile/link with the \texttt{-fprofile-arcs -ftest-coverage} options
 - Adds code during compilation to add counters to every control flow edge (much like our by hand instrumentation) to compute how frequently each block of code gets executed.
 - Run as normal
 - For each \texttt{xyz.c} file an \texttt{xyz.gdna} and \texttt{xyz.gcno} file are generated
 - Post-process with gcov \texttt{xyz.c}
 - Computes execution frequency of each line of code
 - Marks with \texttt{#####} any lines not executed
 - Useful for making sure that you tested your whole program
Example gcov output

Code never executed

14282656: 540: if (cp->hsize) {
###: 541: int hindex = CACHE_HASH(cp, tag);
-: 542:
###: 543: for (blk=cp->sets[set].hash[hindex];
-: 544: blk;
-: 545: blk=blk->hash_next)
-: 546: {
###: 547: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
###: 548: goto cache_hit;
-: 549: }
-: 550: } else {
-: 551: /* linear search the way list */
753030193: 552: for (blk=cp->sets[set].way_head;
-: 553: blk;
-: 554: blk=blk->way_next) {
751950759: 555: if (blk->tag == tag && (blk->status & CACHE_BLK_VALID))
738747537: 556: goto cache_hit;
-: 557: }
-: 558: }

Loop executed over 50 iterations on average (751950759/14282656)
Summary

- Multi-core is having more than one processor on the same chip.
 - Soon most PCs/servers and game consoles will be multi-core
 - Results from Moore’s law and power constraint

- Exploiting multi-core requires parallel programming
 - Automatically extracting parallelism too hard for compiler, in general.
 - But, can have compiler do much of the bookkeeping for us
 - OpenMP

- Fork-Join model of parallelism
 - At parallel region, fork a bunch of threads, do the work in parallel, and then join, continuing with just one thread
 - Expect a speedup of less than P on P processors
 - Amdahl’s Law: speedup limited by serial portion of program
 - Overhead: forking and joining are not free