
AMD64 Calling Conventions for Linux / Mac OSX
CSE 378 – Fall 2010, Section – Week 2

CALLING CONVENTIONS
• Calling conventions are a scheme for how functions receive

parameters from their caller and how they return a result.
• Adhering to calling conventions ensures that your functions won't step

on each other's data when using the same registers.
• Calling conventions allow us to implement recursive functions and call

functions which we cannot see the implementations of.
• Certain registers need to have their contents preserved by the caller if

the caller wants to ensure that the values in those registers are saved
across the function call.

• Other registers need to have their contents saved by the callee (the
function being called) before using them.

• Here's a table summarizing what each register is used for and who is
responsible for saving its contents:

Register Use Saved By

%rax Returning a value from a function Caller

%rbx Optionally used as a base pointer Callee

%rcx Used to pass the 4th argument to a function Caller

%rdx Used to pass the 3rd argument to a function & optionally
to return a second value

Caller

%rsp Stack pointer

%rbp Frame pointer Callee

%rsi Used to pass the 2nd argument to a function Caller

%rdi Used to pass the 1st argument to a function Caller

%r8 Used to pass 5th argument to a function Caller

%r9 Used to pass 6th argument to a function Caller

%r10 Temporary register also used to pass a function's static
chain pointer

Caller

%r11 Temporary register Caller

%r12 Temporary register Callee

%r13 Temporary register Callee

%r14 Temporary register Callee

%r15 Temporary register Callee

• Registers are saved by spilling them to the current function's stack frame.
This requires allocating space by adjusting the stack pointer and copying
the register's contents to the space. An example:

subq $8, %rsp
movq %rsi, (%rsp)

• Registers are restored by reversing the saving process. E.g.:
movq (%rsp), %rsi
addq $8, %rsp

THE STACK
• Used for storing static global data and variables local to a function

• In essence a given function's stack frame looks like:

• The stack must be aligned on a 16 byte boundary when a function is called,
so %rsp must be divisible by 16 immediately preceding any 'call' instruction.

• The area up to 128 bytes below the stack pointer is called the red zone. It
may be used for temporary storage but can be destroyed by any called
function.

• Since leaf functions do not call any other functions, modern compilers (e.g.
gcc) often choose not to allocate a stack frame for those functions (keeping
%rsp == %rbp) and spill the necessary registers directly to the red zone.

IMPLEMENTING FUNCTIONS
• Each function contains a prologue at the beginning and an epilogue at the

end.
• The prologue sets-up the stack frame for the function by saving the base

pointer to the stack and moving the base pointer to the top of the stack.
Example:

pushq %rbp
movq %rsp, %rbp

• The epilogue cleans up the stack frame and restores the stack and base
pointers to the pre-call values and jumps to the saved return address
Example:

leave
ret

• The caller is responsible for setting-up the arguments for the callee in the
appropriate order (%rdi, %rsi, %rdx, %rcx, %r8, %r9)

• The callee function returns its value via %rax.

