The Hardware (the motherboard)

- CPU socket
- Memory slots
- IDE drive connectors
- AGP slot
- PCI slots
- Serial, parallel, and USB ports

What is all that stuff?

- Different motherboards support different CPUs, types of memories, and expansion options.
- The picture is an Asus A7V.
 - The CPU socket supports AMD Duron and Athlon processors.
 - There are three DIMM slots for standard PC100 memory. Using 512MB DIMMs, you can get up to 1.5GB of main memory.
 - The AGP slot is for video cards, which generate and send images from the PC to a monitor.
 - IDE ports connect internal storage devices like hard drives, CD-ROMs, and Zip drives.
 - PCI slots hold other internal devices such as network and sound cards and modems.
 - Serial, parallel and USB ports are used to attach external devices such as scanners and printers.
There are two fundamental performance metrics for I/O systems:

- **Bandwidth**: the amount of data that can be transferred in unit time (units = bytes/time)
 - This is a primary concern for applications which transfer large amounts of data in big blocks.
 - If you download large files, bandwidth will be the limiting factor.

- **Latency**: the time taken for the smallest transfer (units = time)
 - This is a primary concern for programs that do many small dependent transfers.
 - It takes time for bits to travel across states, countries and oceans!

```
> ping www.uiuc.edu
Approximate round trip times in milli-seconds:
  Minimum = 104ms, Maximum = 115ms, Average = 112ms

> ping www.stanford.edu
Approximate round trip times in milli-seconds:
  Minimum = 160ms, Maximum = 170ms, Average = 164ms

> ping nus.edu.sg
Approximate round trip times in milli-seconds:
  Minimum = 410ms, Maximum = 457ms, Average = 420ms
```
Hard drives

- The textbook shows the ugly guts of a hard disk.
 - Data is stored on double-sided magnetic disks called **platters**.
 - Each platter is arranged like a record, with many concentric **tracks**.
 - Tracks are further divided into individual **sectors**, which are the basic unit of data transfer.
 - Each surface has a read/write head like the arm on a record player, but all the heads are connected and move together.
- A 75GB IBM Deskstar has roughly:
 - 5 platters (10 surfaces),
 - 27,000 tracks per surface,
 - 512 sectors per track, and
 - 512 bytes per sector.

Accessing data on a hard disk

- Accessing a sector on a track on a hard disk takes a lot of time!
 - **Seek time** measures the delay for the disk head to reach the track.
 - A **rotational delay** accounts for the time to get to the right sector.
 - The **transfer time** is how long the actual data read or write takes.
 - There may be additional **overhead** for the operating system or the controller hardware on the hard disk drive.
- **Rotational speed**, measured in revolutions per minute or RPM, partially determines the rotational delay and transfer time.
Estimating disk latencies (seek time)

- Manufacturers often report average seek times of 8-10ms.
 - These times average the time to seek from any track to any other track.
- In practice, seek times are often much better.
 - For example, if the head is already on or near the desired track, then seek time is much smaller. In other words, locality is important!
 - Actual average seek times are often just 2-3ms.

Estimating Disk Latencies (rotational latency)

- Once the head is in place, we need to wait until the right sector is underneath the head.
 - This may require as little as no time (reading consecutive sectors) or as much as a full rotation (just missed it).
 - On average, for random reads/writes, we can assume that the disk spins halfway on average.

- Rotational delay depends partly on how fast the disk platters spin.

 \[
 \text{Average rotational delay} = 0.5 \times \text{rotations} \times \text{rotational speed}
 \]

 - For example, a 5400 RPM disk has an average rotational delay of:

 \[
 0.5 \text{ rotations} / (5400 \text{ rotations/minute}) = 5.55\text{ms}
 \]
Estimating disk times

- The overall response time is the sum of the seek time, rotational delay, transfer time, and overhead.
- Assume a disk has the following specifications.
 - An average seek time of 9ms
 - A 5400 RPM rotational speed
 - A 10MB/s average transfer rate
 - 2ms of overhead
- How long does it take to read a random 1,024 byte sector?
 - The average rotational delay is 5.55ms.
 - The transfer time will be about \(\frac{1024 \text{ bytes}}{10 \text{ MB/s}} = 0.1 \text{ms} \).
 - The response time is then \(9 \text{ms} + 5.55 \text{ms} + 0.1 \text{ms} + 2 \text{ms} = 16.7 \text{ms} \).
 - That’s 16,700,000 cycles for a 1GHz processor!
- One possible measure of throughput would be the number of random sectors that can be read in one second.
 \[
 \left(\frac{1 \text{ sector}}{16.7 \text{ms}} \right) \times \left(\frac{1000 \text{ms}}{1 \text{s}} \right) = 60 \text{ sectors/second}.
 \]

Computer buses

- Every computer has several small “networks” inside, called buses, to connect processors, memory, and I/O devices.
- The simplest kind of bus is linear, as shown below.
 - All devices share the same bus.
 - Only one device at a time may transfer data on the bus.
- Simple is not always good!
 - With many devices, there might be a lot of contention.
 - The distance from one end of the bus to the other may also be relatively long, increasing latencies.
Hierarchical buses

- We could split the bus into different segments.
 - Since the CPU and memory need to communicate so often, a shorter and faster processor-memory bus can be dedicated to them.
 - A separate I/O bus would connect the slower devices to each other, and eventually to the processor.

Basic bus protocols

- Although physically, our computer may have a hierarchy of buses (for performance), logically it behaves like a single bus.
- I/O reads and writes can be programmed like loads and stores, using addresses.
- Two devices might interact as follows.
 1. An initiator sends an address and data over the bus to a target.
 2. The target processes the request by “reading” or “writing” data.
 3. The target sends a reply over the bus back to the initiator.
- The bus width limits the number of bits transferred per cycle.
What is the bus anyway?

- A bus is just a bunch of wires which transmits three kinds of information.
 - Control signals specify commands like “read” or “write.”
 - The location on the device to read or write is the address.
 - Finally, there is also the actual data being transferred.
- Some buses include separate control, address and data lines, so all of this information can be sent in one clock cycle.

![Diagram of bus lines](image)

Multiplexed bus lines

- Unfortunately, this could lead to many wires and wires cost money.
 - Many buses transfer 32 to 64 bits of data at a time.
 - Addresses are usually at least 32-bits long.
- Another common approach is to multiplex some lines.
 - For example, we can use the same lines to send both the address and the data, one after the other.
 - The drawback is that now it takes two cycles to transmit both pieces of information.

![Diagram of multiplexed bus lines](image)
Example bus problems

- I/O problems always start with some assumptions about a system.
 - A CPU and memory share a 32-bit bus running at 100MHz.
 - The memory needs 50ns to access a 64-bit value from one address.
- Then, questions generally ask about the latency or throughput.
 - How long does it take to read one address of memory?
 - How many random addresses can be read per second?
- You need to find the total time for a single transaction.
 1. It takes one cycle to send a 32-bit address to the memory.
 2. The memory needs 50ns, or 5 cycles, to read a 64-bit value.
 3. It takes two cycles to send 64 bits over a 32-bit wide bus.
- Then you can calculate latencies and throughputs.
 - The time to read from one address is eight cycles or 80ns.
 - You can do 12.5 million reads per second, for an effective bandwidth of \((12.5 \times 10^6 \text{ reads/second}) \times (8 \text{ bytes/read}) = 100\text{MB/s} \).
Buses in modern PCs

- CPU
- North Bridge chip → AGP port → Video card
- Memory
- PCI bus
- PCI slots
 - Modem
 - Sound card
 - IDE controller
 - Hard disks
 - CD-ROM
 - Serial, parallel and USB ports

PCI

- **Peripheral Component Interconnect** is a synchronous 32-bit bus running at 33MHz, although it can be extended to 64 bits and 66MHz.
- The **maximum bandwidth** is about 132 MB/s.
 \[
 33 \text{ million transfers/second} \times 4 \text{ bytes/transfer} = 132 \text{MB/s}
 \]
- Cards in the motherboard PCI slots plug directly into the PCI bus.
- Devices made for the older and slower ISA bus standard are connected via a “south bridge” controller chip, in a hierarchical manner.
Frequencies

- CPUs actually operate at two frequencies.
 - The internal frequency is the clock rate inside the CPU, which is what we’ve been talking about so far.
 - The external frequency is the speed of the processor bus, which limits how fast the CPU can transfer data.
- The internal frequency is usually a multiple of the external bus speed.
 - A 2.167 GHz Athlon XP sits on a 166 MHz bus (166 x 13).
 - A 2.66 GHz Pentium 4 might use a 133 MHz bus (133 x 20).
 - You may have seen the Pentium 4’s bus speed quoted at 533MHz. This is because the Pentium 4’s bus is “quad-pumped”, so that it transfers 4 data items every clock cycle.
- Processor and Memory data rates far exceed PCI’s capabilities:
 - With an 8-byte wide “533 MHz” bus, the Pentium 4 achieves 4.3GB/s
 - A bank of 166MHz Double Data Rate (DDR-333) Memory achieves 2.7GB/s

The North Bridge

- To achieve the necessary bandwidths, a “frontside bus” is often dedicated to the CPU and main memory.
 - “bus” is actually a bit of a misnomer as, in most systems, the interconnect consists of point-to-point links.
 - The video card, which also need significant bandwidth, is also given a direct link to memory via the Accelerated Graphics Port (AGP).
- All this CPU-memory traffic goes through the “north bridge” controller, which can get very hot (hence the little green heatsink).
External buses

- External buses are provided to support the frequent plugging and unplugging of devices
 - As a result their designs significantly differ from internal buses

- Two modern external buses, Universal Serial Bus (USB) and FireWire, have the following (desirable) characteristics:
 - Plug-and-play standards allow devices to be configured with software, instead of flipping switches or setting jumpers.
 - Hot plugging means that you don’t have to turn off a machine to add or remove a peripheral.
 - The cable transmits power! No more power cables or extension cords.
 - Serial links are used, so the cable and connectors are small.

Serial/Parallel

- Why are modern external buses serial rather than parallel?

 - Generally, one would think that having more wires would increase bandwidth and reduce latency, right?
 - Yes, but only if they can be clocked at comparable frequencies.

 - Two physical issues allow serial links to be clocked significantly faster:
 - On parallel interconnects, interference between the signal wires becomes a serious issue.
 - Skew is also a problem; all of the bits in a parallel transfer could arrive at slightly different times.

 - Serial links are being increasingly considered for internal buses:
 - Serial ATA is a new standard for hard drive interconnects
 - PCI-Express (aka 3G1/O) is a PCI bus replacement that uses serial links