

Pipelining vs. Parallel processing

s ___——————=====_=_=_=_.=
= In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where eact
piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single
functional unit

= We will briefly introduce the key ideas behind parallel processing
— instruction level parallelism
— thread-level parallelism

It is all about dependences!

[l

Exploiting Parallelism

= Of the computing problems for which performance is important, many
have inherent parallelism

= Best example: computer games
— Graphics, physics, sound, Al etc. can be done separately
— Furthermore, there is often parallelism within each of these:
O « Each pixel on the screen’s color can be computed independently
@ e Non-contacting objects can be updated/simulated independently
o Artificial intelligence of non-human entities done independently

= Another example: Google queries
— Every query is independent
— Google is read-only!!

‘ \

Parallelism at the Instruction Level

w n
add - $3, @
or@ <-‘($4
lw @<
addi $7 < $6 0x5

sub $8 <- $8, $4
$¢ «—

add $2 <- $3, $6
or $5 <- $2, $4

lw $6 <- 0($4)

sub $8 <- $8, $4
addi $7 <- $6, 0x5

Dependences?
RAWGE—

WAW &

WAR

When can we reorder instructions?

obe) Loprdues,

When should we reorder instructions?

—) O r(le Vo lde s
Surperscalar Processors:
Multiple instructions executing in
parallel at *same™ stage

000 Execution Hardware

—

L’Q T

4eservation Reservation Reservation || Reservation
station f statior? station station

Functional r E Floatin (_\
. L 9 Load/ ut-of-order execute
units Integer [~ 1 | Integer | < ... boint Store S

Com_mit In-order commit
unit

X T :
-l T T Instruction fetch order i
=3 N and decode unit n-oraerissue

-

-l

Exploiting Parallelism at the Data Level

» Consider adding together two arrays:

void
array add(int A[], int B[], int C[], int length) {
int 1;
for (1 = 0 ; 1 < length ; ++ i) {
Cli] = A[1] + B[1i];

}

Operating on one element at a time

Exploiting Parallelism at the Data Level

» Consider adding together two arrays:

void
array add(int A[], int B[], int C[], int length) {
int 1;
for (1 = 0 ; 1 < length ; ++ i) {
Cli] = A[1] + B[1i];

}

Operating on one element at a time

i

.

& O &

)

Exploiting Parallelism at the Data Level (SIMD)

Consider adding together two arrays:

void
array add(int A[], int B[], int C[], int length) {
int 1;
for (1 = 0 ; 1 < length ; ++ i) {
Cli] = A[1] + B[1i];

Operate on MULTIPLE elements

Single Instruction,
Multiple Data (SIMD)

Intel SSE/SSE2 as an example o@

- , each can store
4*32b

e Added new 128 bit registers (XMMO
— 4 single precision FP values (SSE)
— 2 double precision FP values (SSE2)

— 16 byte values (SSE2)

— 8 word values (SSE2)

— 4 double word values (SSE2)
— 1 128-bit integer value (SSE2)

2 * 64b
16 * 8b
8 * 16b
4 *32b
1*128b

4.0 (32 bits)

4.0 (32 bits)

3.5 (32 bits)

2.0 (32 bits)

+ _1.5 (32 bits)

2.0 (32 bits)

1.7 (32 bits)

2.3 (32 bits)

2.5 (32 bits)

6.0 (32 bits)

5.2 (32 bits)

0.3 (32 bits)

Is it always that easy?

= Not always... a more challenging example:

unsigned
sum array (unsigned *array, int length) ({
int total = 0;
for (int 1 = 0 ; 1 < length ; ++ 1) {
total += arrayl[i];
}

return total;

= |s there parallelism here?

We first need to restructure the code

unsigned
sum arrayZ (unsigned *array, 1int length) { Oo !
unsigned total, 1i; 1V o>

unsigned temp[4] = {0, O, 0} T | ¥ %
for (1 = 0 ; 1 < length(& ~0x3 ; 1 += 4)jf::::::7°°

temp[0] += array[i];

temp[l] += arrayl[it+l];
temp[2] += arrayl[it2];
temp[3] += arrayl[i1+3];

}
total = temp[0] + temp[l] + temp[2] + templ[3],;&
for (; 1 < length ; ++ 1) {
total += arrayl([i]; <’3
} —

return total;

¢

Then we can write SIMD code for the hot part

unsigned
sum arrayZ (unsigned *array, 1int length) {
unsigned total, 1;
unsigned temp(4] = {0, 0, 0, 0},
for (1 =0 ; i < length & ~0x3 ; i += 4) {
temp[0] += array([i]:
temp[l] += array[i+l];
temp[2] += array[i+2];
temp[3] += array[i+3];
}
total = temp[0] + temp[l] + temp[2] + temp[3];
for (; 1 < length ; ++ 1) {
total += arrayl([i];
}

return total;

Thread level parallelism: Multi-Core Processors

= Two (or more) complete processors, fabricated on the same silicon chip
= Execute instructions from two (or more) programs/threads at same time

omurese

——LS'-WeEtBW o 4 IBM Power5

Multi-Cores are Everywhere

Intel Core Duo in new Macs: 2 x86 processors on same chip

' CoreDuc |

XBox360: 3 PowerPC cores '.P
)B0K360 °.,

Vdiz W E
\..' .°

.

Sony Playstation 3: Cell processor, an asymmetric
multi-core with 9 cores (1 general-purpose, 8
special purpose SIMD processors)

Why Multi-cores Now?

= Number of transistors we can put on a chip growing exponentially...

MOORE'S LAW Intel” anium® 2 Processor 1,000,000,000

Intel” tanium®@ Processor

Intel” Pentiumna 4 Procossor 100,000,000
Intel” Pentiumn il Processor

{ 10,000,000

1 1,000,000

1970 1975 | 1980 1985 2005

... and performance growing too...

- |
Pentium 4 4|
35 (Cedarmill)
30 power = perf * 1.75
25 Pentium 4
5 (Willamette) *
8
15
10 Pentium Pro.+
5
486 * Pentium
0 ~ 3
0 2 4 6 8|
Scalar Performance 1

= But power is growing even faster!!
— Powerhas become limiting factor in current chips

As programmers, do we care?

= What happens if we run a program on a multi-core?

void
array add(int A[], int B[], int C[], int length) {
int 1i;
for (1 = 0 ; 1 < length ; ++i) {
C[i] = A[1] + BI[1];
}

What if we want a program to run on both processors:

= We have to explicitly tell the machine exactly how to do this
— This is called parallel programming or concurrent programming

= There are many parallel/concurrent programming models
— We will look at a relatively simple one: fork-join parallelism
— Posix threads and explicit synchronization

master
thread

{ parallel region } { parallel region }

Fork/Join Logical Example

r<Bork N-1 threads
EBreak work into N pieces (and do it)
Ekdbin (N-1) threads

void
array add(int A[], int B[], 1int C[], int length) {
cpu num = fork (N-1);

int 1i;
for (1 = cpu num ; i < length ; 1 += N) {
Cli] = A[1] + BI[i];
}
join();
}
: L A
How good is this with caches? B:

Memory

How does this help performance?

= Parallel speedup measures improvement from parallelization:

time for best serial version

speedup(p) =
time for version with p processors

= What can we realistically expect?

‘ o
@ Q,\’l
(oN '\b’/’
- L
© ’
QQ ,
() iy
Q.
w /’
1 —

>
: p = number of processors

Reason #1: Amdahl’s Law

* In general, the whole computation is not (easily) parallelizable

—_—

master
thread

{ parallel region }

Serial regions

Reason #1: Amdahl’s Law

= Suppose a program takes 1 unit of time to execute serially
= A fraction of the program, s, is inherently serial (unparallelizable)

-«+— Time on a single processor ——»

s (1-s8) I
L_M' New Execution 1-s

Time on a Time - P
-+— parallel —

machine

= For example, consider a program that, when executing on one processor, spen
10% of its time in a non-parallelizable region. How much faster will this progra
run on a 3-processor system?

New Execution _ 9T . AT = speedup =

Time 3

= What is the maximum speedup from parallelization?

Reason #2: Overhead

void

array add(int A[], int B[], int C[], int length) {
cpu num = fork (N-1);,

int 1i;

for (1 = cpu num ; i < length ; 1 += N) {
C[i] = A[i] + B[i];

}

join();

— Forking and joining is not instantaneous
e Involves communicating between processors
e May involve calls into the operating system
— Depends on the implementation

New Execution _ 1-S
Time S p

+ s + overhead(P)

Programming Explicit Thread-level Parallelism

= As noted previously, the programmer must specify how to parallelize
= But, want path of least effort

= Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

= Want a way to take serial code and say “Do this in parallel!” without:
— Having to manage the synchronization between processors
— Having to know a priori how many processors the system has
— Deciding exactly which processor does what
— Replicate the private state of each thread

= OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.

Performance Optimization

Until you are an expert, first write a working version of the program
Then, and only then, begin tuning, first collecting data, and iterate
— Otherwise, you will likely optimize what doesn’t matter

3. Analyze Data
1. Create a 2. Collect and Identity

Benchmark Data Performance
Problems

5. 1s
Problem 4. Fix the
Fixed? problems in your

code or system

6. Are
performance
requirements

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

Summary

= Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core
— Results from Moore’s law and power constraint

= Exploiting multi-core requires parallel programming
— Automatically extracting parallelism too hard for compiler, in general
— But, can have compiler do much of the bookkeeping for us
— OpenMP

= Fork-Join model of parallelism

— At parallel region, fork a bunch of threads, do the work in parallel, ar
then join, continuing with just one thread

— Expect a speedup of less than P on P processors
 Amdahl’s Law: speedup limited by serial portion of program
e Overhead: forking and joining are not free

