
1

2

Pipelining vs. Parallel processing

 In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where each
piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single
functional unit

 We will briefly introduce the key ideas behind parallel processing
— instruction level parallelism
— thread-level parallelism

3

It is all about dependences!

4

Exploiting Parallelism

 Of the computing problems for which performance is important, many
have inherent parallelism

 Best example: computer games
— Graphics, physics, sound, AI etc. can be done separately
— Furthermore, there is often parallelism within each of these:

• Each pixel on the screen’s color can be computed independently
• Non-contacting objects can be updated/simulated independently
• Artificial intelligence of non-human entities done independently

 Another example: Google queries
— Every query is independent
— Google is read-only!!

5

Parallelism at the Instruction Level

add $2 <- $3, $6
or $2 <- $2, $4
lw $6 <- 0($4)
addi $7 <- $6, 0x5
sub $8 <- $8, $4

Dependences?
RAW
WAW
WAR

When can we reorder instructions?

add $2 <- $3, $6
or $5 <- $2, $4
lw $6 <- 0($4)
sub $8 <- $8, $4
addi $7 <- $6, 0x5

When should we reorder instructions?

Surperscalar Processors:
Multiple instructions executing in
parallel at *same* stage

6

OoO Execution Hardware

7

Exploiting Parallelism at the Data Level

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {

 C[i] = A[i] + B[i];
 }
}

+

Operating on one element at a time

8

Exploiting Parallelism at the Data Level

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {

 C[i] = A[i] + B[i];
 }
}

+

Operating on one element at a time

9

 Consider adding together two arrays:

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++ i) {

 C[i] = A[i] + B[i];
 }
}

+

Exploiting Parallelism at the Data Level (SIMD)

+

Operate on MULTIPLE elements

+ + Single Instruction,
Multiple Data (SIMD)

10

Intel SSE/SSE2 as an example of SIMD

• Added new 128 bit registers (XMM0 – XMM7), each can store
— 4 single precision FP values (SSE) 4 * 32b
— 2 double precision FP values (SSE2) 2 * 64b
— 16 byte values (SSE2) 16 * 8b
— 8 word values (SSE2) 8 * 16b
— 4 double word values (SSE2) 4 * 32b
— 1 128-bit integer value (SSE2) 1 * 128b

 4.0 (32 bits)

+

 4.0 (32 bits) 3.5 (32 bits) -2.0 (32 bits)

 2.3 (32 bits) 1.7 (32 bits) 2.0 (32 bits)-1.5 (32 bits)

 0.3 (32 bits) 5.2 (32 bits) 6.0 (32 bits)2.5 (32 bits)

11

Is it always that easy?

 Not always… a more challenging example:

unsigned
sum_array(unsigned *array, int length) {
 int total = 0;
 for (int i = 0 ; i < length ; ++ i) {
 total += array[i];
 }
 return total;
}

 Is there parallelism here?

12

We first need to restructure the code

unsigned
sum_array2(unsigned *array, int length) {
 unsigned total, i;
 unsigned temp[4] = {0, 0, 0, 0};
 for (i = 0 ; i < length & ~0x3 ; i += 4) {
 temp[0] += array[i];
 temp[1] += array[i+1];
 temp[2] += array[i+2];
 temp[3] += array[i+3];
 }
 total = temp[0] + temp[1] + temp[2] + temp[3];
 for (; i < length ; ++ i) {
 total += array[i];
 }
 return total;
}

13

Then we can write SIMD code for the hot part

unsigned
sum_array2(unsigned *array, int length) {
 unsigned total, i;
 unsigned temp[4] = {0, 0, 0, 0};
 for (i = 0 ; i < length & ~0x3 ; i += 4) {
 temp[0] += array[i];
 temp[1] += array[i+1];
 temp[2] += array[i+2];
 temp[3] += array[i+3];
 }
 total = temp[0] + temp[1] + temp[2] + temp[3];
 for (; i < length ; ++ i) {
 total += array[i];
 }
 return total;
}

14

Thread level parallelism: Multi-Core Processors

 Two (or more) complete processors, fabricated on the same silicon chip
 Execute instructions from two (or more) programs/threads at same time

#1 #2

IBM Power5

15

Multi-Cores are Everywhere

Intel Core Duo in new Macs: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric
multi-core with 9 cores (1 general-purpose, 8
special purpose SIMD processors)

16

Why Multi-cores Now?

 Number of transistors we can put on a chip growing exponentially…

17

… and performance growing too…

 But power is growing even faster!!
— Power has become limiting factor in current chips

18

 What happens if we run a program on a multi-core?

void
array_add(int A[], int B[], int C[], int length) {
 int i;
 for (i = 0 ; i < length ; ++i) {
 C[i] = A[i] + B[i];

 }
}

As programmers, do we care?

#1 #2

19

What if we want a program to run on both processors?

 We have to explicitly tell the machine exactly how to do this
— This is called parallel programming or concurrent programming

 There are many parallel/concurrent programming models
— We will look at a relatively simple one: fork-join parallelism
— Posix threads and explicit synchronization

20

Fork N-1 threads
Break work into N pieces (and do it)
Join (N-1) threads

void
array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
 int i;
 for (i = cpu_num ; i < length ; i += N) {

 C[i] = A[i] + B[i];
 }

join();
}

Fork/Join Logical Example

How good is this with caches?

21

How does this help performance?

 Parallel speedup measures improvement from parallelization:

 time for best serial version
 time for version with p processors

 What can we realistically expect?

speedup(p) =

22

 In general, the whole computation is not (easily) parallelizable

Reason #1: Amdahl’s Law

Serial regions

23

 Suppose a program takes 1 unit of time to execute serially
 A fraction of the program, s, is inherently serial (unparallelizable)

 For example, consider a program that, when executing on one processor, spends
10% of its time in a non-parallelizable region. How much faster will this program
run on a 3-processor system?

 What is the maximum speedup from parallelization?

Reason #1: Amdahl’s Law

New Execution
Time =

1-s
+ s

P

New Execution
Time =

.9T
+ .1T =

3
Speedup =

24

void
array_add(int A[], int B[], int C[], int length) {

cpu_num = fork(N-1);
 int i;
 for (i = cpu_num ; i < length ; i += N) {

 C[i] = A[i] + B[i];
 }

join();
}

— Forking and joining is not instantaneous
• Involves communicating between processors
• May involve calls into the operating system
— Depends on the implementation

Reason #2: Overhead

New Execution
Time =

1-s
+ s + overhead(P)

P

25

Programming Explicit Thread-level Parallelism

 As noted previously, the programmer must specify how to parallelize
 But, want path of least effort

 Division of labor between the Human and the Compiler
— Humans: good at expressing parallelism, bad at bookkeeping
— Compilers: bad at finding parallelism, good at bookkeeping

 Want a way to take serial code and say “Do this in parallel!” without:
— Having to manage the synchronization between processors
— Having to know a priori how many processors the system has
— Deciding exactly which processor does what
— Replicate the private state of each thread

 OpenMP: an industry standard set of compiler extensions
— Works very well for programs with structured parallelism.

26

Performance Optimization

 Until you are an expert, first write a working version of the program
 Then, and only then, begin tuning, first collecting data, and iterate

— Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.” -- Sir Tony Hoare

27

 Multi-core is having more than one processor on the same chip.
— Soon most PCs/servers and game consoles will be multi-core
— Results from Moore’s law and power constraint

 Exploiting multi-core requires parallel programming
— Automatically extracting parallelism too hard for compiler, in general.
— But, can have compiler do much of the bookkeeping for us
— OpenMP

 Fork-Join model of parallelism
— At parallel region, fork a bunch of threads, do the work in parallel, and

then join, continuing with just one thread
— Expect a speedup of less than P on P processors

• Amdahl’s Law: speedup limited by serial portion of program
• Overhead: forking and joining are not free

Summary

