In both cases, multiple “things” processed by multiple “functional units”

Pipelining: each thing is broken into a sequence of pieces, where each piece is handled by a different (specialized) functional unit

Parallel processing: each thing is processed entirely by a single functional unit

We will briefly introduce the key ideas behind parallel processing

– instruction level parallelism
– thread-level parallelism
It is all about dependences!
Exploiting Parallelism

- Of the computing problems for which performance is important, many have inherent parallelism

- Best example: computer games
 - Graphics, physics, sound, AI etc. can be done separately
 - Furthermore, there is often parallelism within each of these:
 - Each pixel on the screen’s color can be computed independently
 - Non-contacting objects can be updated/simulated independently
 - Artificial intelligence of non-human entities done independently

- Another example: Google queries
 - Every query is independent
 - Google is read-only!!
Parallelism at the Instruction Level

Dependences?
- RAW
- WAW
- WAR

When can we reorder instructions?
- Obey dependencies!

When should we reorder instructions?
- **Firing latency**
- **Exploded parallelism**

Surpserscalar Processors:
Multiple instructions executing in parallel at *same* stage

```
add $2 <- $3, $6
or $2 <- $2, $4
lw $6 <- 0($4)
addi $7 <- $6, 0x5
sub $8 <- $8, $4
```

```
add $2 <- $3, $6
or $5 <- $2, $4
lw $6 <- 0($4)
sub $8 <- $8, $4
addi $7 <- $6, 0x5
```
OoO Execution Hardware

Instruction fetch and decode unit

Reservation station

Reservation station

Reservation station

Reservation station

Functional units

Out-of-order execute

In-order commit

In-order issue

Load/Store
Exploiting Parallelism at the Data Level

- Consider adding together two arrays:

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0 ; i < length ; ++ i) {
        C[i] = A[i] + B[i];
    }
}
```

Operating on one element at a time
Exploiting Parallelism at the Data Level

- Consider adding together two arrays:

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0 ; i < length ; ++ i) {
        C[i] = A[i] + B[i];
    }
}
```

Operating on one element at a time
Consider adding together two arrays:

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0 ; i < length ; ++ i) {
        C[i] = A[i] + B[i];
    }
}
```

Exploiting Parallelism at the Data Level (SIMD)

- Operate on MULTIPLE elements
- Single Instruction, Multiple Data (SIMD)
Intel SSE/SSE2 as an example of SIMD

- Added new 128 bit registers (XMM0 - XMM7), each can store
 - 4 single precision FP values (SSE) \(4 \times 32\) bits
 - 2 double precision FP values (SSE2) \(2 \times 64\) bits
 - 16 byte values (SSE2) \(16 \times 8\) bits
 - 8 word values (SSE2) \(8 \times 16\) bits
 - 4 double word values (SSE2) \(4 \times 32\) bits
 - 1 128-bit integer value (SSE2) \(1 \times 128\) bits

<table>
<thead>
<tr>
<th>4.0 (32 bits)</th>
<th>4.0 (32 bits)</th>
<th>3.5 (32 bits)</th>
<th>-2.0 (32 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-1.5 (32 bits)</td>
<td>2.0 (32 bits)</td>
<td>1.7 (32 bits)</td>
</tr>
<tr>
<td></td>
<td>2.3 (32 bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 (32 bits)</td>
<td>6.0 (32 bits)</td>
<td>5.2 (32 bits)</td>
<td>0.3 (32 bits)</td>
</tr>
</tbody>
</table>
Is it always that easy?

- Not always... a more challenging example:

```c
unsigned sum_array(unsigned *array, int length) {
    int total = 0;
    for (int i = 0 ; i < length ; ++ i) {
        total += array[i];
    }
    return total;
}
```

- Is there parallelism here?
We first need to restructure the code

```c
unsigned
sum_array2(unsigned *array, int length) {
    unsigned total, i;
    unsigned temp[4] = {0, 0, 0, 0};
    for (i = 0; i < length & ~0x3; i += 4) {
        temp[0] += array[i];
        temp[1] += array[i+1];
        temp[2] += array[i+2];
        temp[3] += array[i+3];
    }
    for (; i < length; ++i) {
        total += array[i];
    }
    return total;
}
```
Then we can write SIMD code for the hot part

```c
unsigned
sum_array2(unsigned *array, int length) {
    unsigned total, i;
    unsigned temp[4] = {0, 0, 0, 0};
    for (i = 0 ; i < length & ~0x3 ; i += 4) {
        temp[0] += array[i];
        temp[1] += array[i+1];
        temp[2] += array[i+2];
        temp[3] += array[i+3];
    }
    for ( ; i < length ; ++ i) {
        total += array[i];
    }
    return total;
}
```
Thread level parallelism: Multi-Core Processors

- Two (or more) complete processors, fabricated on the same silicon chip
- Execute instructions from two (or more) programs/threads at the same time
Multi-Cores are Everywhere

Intel Core Duo in new Macs: 2 x86 processors on same chip

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric multi-core with 9 cores (1 general-purpose, 8 special purpose SIMD processors)
Why Multi-cores Now?

- Number of transistors we can put on a chip growing exponentially...
But power is growing even faster!!
- Power has become limiting factor in current chips
As programmers, do we care?

- What happens if we run a program on a multi-core?

```c
void array_add(int A[], int B[], int C[], int length) {
    int i;
    for (i = 0; i < length; ++i) {
        C[i] = A[i] + B[i];
    }
}
```
What if we want a program to run on both processors?

- We have to explicitly tell the machine exactly how to do this
 - This is called parallel programming or concurrent programming

- There are many parallel/concurrent programming models
 - We will look at a relatively simple one: fork-join parallelism
 - Posix threads and explicit synchronization
Fork/Join Logical Example

Fork N-1 threads
Break work into N pieces (and do it)
Join (N-1) threads

```c
void array_add(int A[], int B[], int C[], int length) {
    cpu_num = fork(N-1);
    int i;
    for (i = cpu_num; i < length; i += N) {
        C[i] = A[i] + B[i];
    }
    join();
}
```

How good is this with caches?
How does this help performance?

- Parallel **speedup** measures improvement from parallelization:

\[
\text{speedup}(p) = \frac{\text{time for best serial version}}{\text{time for version with } p \text{ processors}}
\]

- What can we realistically expect?
Reason #1: Amdahl’s Law

- In general, the whole computation is not (easily) parallelizable
Reason #1: Amdahl’s Law

- Suppose a program takes 1 unit of time to execute serially
- A fraction of the program, s, is inherently serial (unparallelizable)

\[\text{New Execution Time} = \frac{1-s}{p} + s \]

For example, consider a program that, when executing on one processor, spends 10% of its time in a non-parallelizable region. How much faster will this program run on a 3-processor system?

New Execution Time = \frac{.9T}{3} + .1T = Speedup =

- What is the maximum speedup from parallelization?
void array_add(int A[], int B[], int C[], int length) {
 cpu_num = fork(N-1);
 int i;
 for (i = cpu_num ; i < length ; i += N) {
 C[i] = A[i] + B[i];
 }
 join();
}

— Forking and joining is not instantaneous
 • Involves communicating between processors
 • May involve calls into the operating system
 — Depends on the implementation

New Execution Time = \frac{1-s}{P} + s + \text{overhead}(P)
Programming Explicit Thread-level Parallelism

- As noted previously, the programmer must specify how to parallelize
- But, want path of least effort

- Division of labor between the Human and the Compiler
 - Humans: good at expressing parallelism, bad at bookkeeping
 - Compilers: bad at finding parallelism, good at bookkeeping

- Want a way to take serial code and say “Do this in parallel!” without:
 - Having to manage the synchronization between processors
 - Having to know a priori how many processors the system has
 - Deciding exactly which processor does what
 - Replicate the private state of each thread

- OpenMP: an industry standard set of compiler extensions
 - Works very well for programs with structured parallelism.
Performance Optimization

- Until you are an expert, first write a working version of the program
- Then, and only then, begin tuning, first collecting data, and iterate
 - Otherwise, you will likely optimize what doesn’t matter

“We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.” — Sir Tony Hoare
Summary

- Multi-core is having more than one processor on the same chip.
 - Soon most PCs/servers and game consoles will be multi-core
 - Results from Moore’s law and power constraint

- Exploiting multi-core requires parallel programming
 - Automatically extracting parallelism too hard for compiler, in general
 - But, can have compiler do much of the bookkeeping for us
 - OpenMP

- Fork-Join model of parallelism
 - At parallel region, fork a bunch of threads, do the work in parallel, and then join, continuing with just one thread
 - Expect a speedup of less than P on P processors
 - Amdahl’s Law: speedup limited by serial portion of program
 - Overhead: forking and joining are not free