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A pipeline diagram

 A pipeline diagram shows the execution of a series of instructions.
— The instruction sequence is shown vertically, from top to bottom.
— Clock cycles are shown horizontally, from left to right.
— Each instruction is divided into its component stages. (We show five

stages for every instruction, which will make the control unit easier.)
 This clearly indicates the overlapping of instructions. For example, there

are three instructions active in the third cycle above.
— The “lw” instruction is in its Execute stage.
— Simultaneously, the “sub” is in its Instruction Decode stage.
— Also, the “and” instruction is just being fetched.

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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Pipeline terminology

 The pipeline depth is the number of stages—in this case, five.
 In the first four cycles here, the pipeline is filling, since there are unused

functional units.
 In cycle 5, the pipeline is full. Five instructions are being executed

simultaneously, so all hardware units are in use.
 In cycles 6-9, the pipeline is emptying.

filling full emptying

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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Pipelined datapath and control

 Now we’ll see a basic implementation of a pipelined processor.
— The datapath and control unit share similarities with both the single-

cycle and multicycle implementations that we already saw.
— An example execution highlights important pipelining concepts.

 In future lectures, we’ll discuss several complications of pipelining that
we’re hiding from you for now.
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Pipelining concepts

 A pipelined processor allows multiple instructions to execute at once, and
each instruction uses a different functional unit in the datapath.

 This increases throughput, so programs can run faster.
— One instruction can finish executing on every clock cycle, and simpler

stages also lead to shorter cycle times.

WBMEMEXIDIFadd $t5, $t6, $0
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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Pipelined Datapath

 The whole point of pipelining is to allow multiple instructions to execute
at the same time.

 We may need to perform several operations in the same cycle.
— Increment the PC and add registers at the same time.
— Fetch one instruction while another one reads or writes data.

 Thus, like the single-cycle datapath, a pipelined processor will need to
duplicate hardware elements that are needed several times in the same
clock cycle.

WBMEMEXIDIFadd $t5, $t6, $0
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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 We need only one register file to support both the ID and WB stages.

 Reads and writes go to separate ports on the register file.
 Writes occur in the first half of the cycle, reads occur in the second half.

One register file is enough

Read
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Read
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Single-cycle datapath, slightly rearranged
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What’s been changed?

 Almost nothing! This is equivalent to the original single-cycle datapath.
— There are separate memories for instructions and data.
— There are two adders for PC-based computations and one ALU.
— The control signals are the same.

 Only some cosmetic changes were made to make the diagram smaller.
— A few labels are missing, and the muxes are smaller.
— The data memory has only one Address input. The actual memory

operation can be determined from the MemRead and MemWrite
control signals.

 The datapath components have also been moved around in preparation
for adding pipeline registers.
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Multiple cycles

 In pipelining, we also divide instruction execution into multiple cycles.
 Information computed during one cycle may be needed in a later cycle.

— The instruction read in the IF stage determines which registers are
fetched in the ID stage, what constant is used for the EX stage, and
what the destination register is for WB.

— The registers read in ID are used in the EX and/or MEM stages.
— The ALU output produced in the EX stage is an effective address for

the MEM stage or a result for the WB stage.
 We added several intermediate registers to the multicycle datapath to

preserve information between stages, as highlighted on the next slide.
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Registers added to the multi-cycle
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Pipeline registers

 We’ll add intermediate registers to our pipelined datapath too.
 There’s a lot of information to save, however. We’ll simplify our

diagrams by drawing just one big pipeline register between each stage.
 The registers are named for the stages they connect.

IF/ID ID/EX EX/MEM MEM/WB

 No register is needed after the WB stage, because after WB the
instruction is done.
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Pipelined datapath
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Propagating values forward

 Any data values required in later stages must be propagated through the
pipeline registers.

 The most extreme example is the destination register.
— The rd field of the instruction word, retrieved in the first stage (IF),

determines the destination register. But that register isn’t updated
until the fifth stage (WB).

— Thus, the rd field must be passed through all of the pipeline stages,
as shown in red on the next slide.

 Why can’t we keep a single instruction register like we did in the multi-
cycle data-path?
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The destination register
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What about control signals?

 The control signals are generated in the same way as in the single-cycle
processor—after an instruction is fetched, the processor decodes it and
produces the appropriate control values.

 But just like before, some of the control signals will not be needed until
some later stage and clock cycle.

 These signals must be propagated through the pipeline until they reach
the appropriate stage. We can just pass them in the pipeline registers,
along with the other data.

 Control signals can be categorized by the pipeline stage that uses them.
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Pipelined datapath and control
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What about control signals?

 The control signals are generated in the same way as in the single-cycle
processor—after an instruction is fetched, the processor decodes it and
produces the appropriate control values.

 But just like before, some of the control signals will not be needed until
some later stage and clock cycle.

 These signals must be propagated through the pipeline until they reach
the appropriate stage. We can just pass them in the pipeline registers,
along with the other data.

 Control signals can be categorized by the pipeline stage that uses them.

MemToRegRegWriteWB

PCSrcMemWriteMemReadMEM

RegDstALUOpALUSrcEX

Control signals neededStage
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Pipelined datapath and control
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Notes about the diagram

 The control signals are grouped together in the pipeline registers, just to
make the diagram a little clearer.

 Not all of the registers have a write enable signal.
— Because the datapath fetches one instruction per cycle, the PC must

also be updated on each clock cycle. Including a write enable for the
PC would be redundant.

— Similarly, the pipeline registers are also written on every cycle, so no
explicit write signals are needed.
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 Here’s a sample sequence of instructions to execute.

1000: lw $8, 4($29)
1004: sub $2, $4, $5
1008: and $9, $10, $11
1012: or $16, $17, $18
1016: add $13, $14, $0

 We’ll make some assumptions, just so we can show actual data values.
— Each register contains its number plus 100. For instance, register $8

contains 108, register $29 contains 129, and so forth.
— Every data memory location contains 99.

 Our pipeline diagrams will follow some conventions.
— An X indicates values that aren’t important, like the constant field of

an R-type instruction.
— Question marks ??? indicate values we don’t know, usually resulting

from instructions coming before and after the ones in our example.

An example execution sequence

addresses
in decimal
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Cycle 1 (filling)
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Read
address

Instruction
memory

Instruction
[31-0] Address

Write
data

   Data
   memory

Read
data

MemWrite (?)

MemRead (?)

1

0

 MemToReg
(?)

Shift
left 2

 Add

1

0

PCSrc

ALUSrc (?)

Result

ZeroALU

ALUOp (???)

RegDst (?)

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite (?)

 Add

0

1

  0

  1

IF/ID

ID/EX

EX/MEM

MEM/WB Control
M

WB

WB

1000

1004

???

???

???

???

???

???

???

???

???

  ???

  ???

???

???

???

  ???

???

???

???

???

???

???
???

???

 4

P
C

Sign
extend

EX

M

WB



22

Cycle 2
ID: lw $8, 4($29)IF: sub $2, $4, $5 MEM: ??? WB: ???EX: ???
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Cycle 3
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Cycle 4
ID: and $9, $10, $11IF: or $16, $17, $18 EX: sub $2, $4, $5 MEM: lw $8, 4($29) WB: ???
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Cycle 5 (full)
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Cycle 6 (emptying)
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Cycle 7
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Cycle 8
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Cycle 9
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That’s a lot of diagrams there

 Compare the last nine slides with the pipeline diagram above.
— You can see how instruction executions are overlapped.
— Each functional unit is used by a different instruction in each cycle.
— The pipeline registers save control and data values generated in

previous clock cycles for later use.
— When the pipeline is full in clock cycle 5, all of the hardware units

are utilized. This is the ideal situation, and what makes pipelined
processors so fast.

 Try to understand this example or the similar one in the book at the end
of Section 6.3.

WBMEMEXIDIFadd $t5, $t6, $0
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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Performance Revisited

 Assuming the following functional unit latencies:

 What is the cycle time of a single-cycle implementation?
— What is its throughput?

 What is the cycle time of a ideal pipelined implementation?
— What is its steady-state throughput?

 How much faster is pipelining?

     A
LU

Inst
mem

Reg
Read

   Data
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Reg
Write

3ns 2ns 2ns 3ns 2ns
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Ideal speedup

 In our pipeline, we can execute up to five instructions simultaneously.
— This implies that the maximum speedup is 5 times.
— In general, the ideal speedup equals the pipeline depth.

 Why was our speedup on the previous slide “only” 4 times?
— The pipeline stages are imbalanced: a register file and ALU operations

can be done in 2ns, but we must stretch that out to 3ns to keep the
ID, EX, and WB stages synchronized with IF and MEM.

— Balancing the stages is one of the many hard parts in designing a
pipelined processor.

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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The pipelining paradox

 Pipelining does not improve the execution time of any single instruction.
Each instruction here actually takes longer to execute than in a single-
cycle datapath (15ns vs. 12ns)!

 Instead, pipelining increases the throughput, or the amount of work done
per unit time. Here, several instructions are executed together in each
clock cycle.

 The result is improved execution time for a sequence of instructions, such
as an entire program.

WBMEMEXIDIFadd $sp, $sp, -4
WBMEMEXIDIFor $s0, $s1, $s2

WBMEMEXIDIFand $t1, $t2, $t3
WBMEMEXIDIFsub $v0, $a0, $a1

WBMEMEXIDIFlw $t0, 4($sp)
987654321

Clock cycle
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Instruction set architectures and pipelining

 The MIPS instruction set was designed especially for easy pipelining.
— All instructions are 32-bits long, so the instruction fetch stage just

needs to read one word on every clock cycle.
— Fields are in the same position in different instruction formats—the

opcode is always the first six bits, rs is the next five bits, etc. This
makes things easy for the ID stage.

— MIPS is a register-to-register architecture, so arithmetic operations
cannot contain memory references. This keeps the pipeline shorter
and simpler.

 Pipelining is harder for older, more complex instruction sets.
— If different instructions had different lengths or formats, the fetch

and decode stages would need extra time to determine the actual
length of each instruction and the position of the fields.

— With memory-to-memory instructions, additional pipeline stages may
be needed to compute effective addresses and read memory before
the EX stage.
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Summary

 The pipelined datapath combines ideas from the single and multicycle
processors that we saw earlier.
— It uses multiple memories and ALUs.
— Instruction execution is split into several stages.

 Pipeline registers propagate data and control values to later stages.
 The MIPS instruction set architecture supports pipelining with uniform

instruction formats and simple addressing modes.

 Next lecture, we’ll start talking about Hazards.


