
1

378: Machine Organization and Assembly Language

Fall 2007

Slides adapted from Josep Torrellas, Craig Zilles, and Howard Huang

Luis Ceze

2

! Computer architecture is the study of building computer systems.

! CSE378 is roughly split into three parts.

— The first third discusses instruction set architectures—the bridge
between hardware and software.

— Next, we introduce more advanced processor implementations. The
focus is on pipelining, which is one of the most important ways to
improve performance.

— Finally, we talk about memory systems, I/O, and how to connect it all
together.

What is computer architecture about?

MemoryProcessor

Input/Output

3

Why should you care?

! It is interesting.

— You will learn how a processor actually works!

! It will help you be a better programmer.

— Understanding how your program is translated to assembly code lets
you reason about correctness and performance.

— Demystify the seemingly arbitrary (e.g., bus errors, segmentation faults)

! Many cool jobs require an understanding of computer architecture.

— The cutting edge is often pushing computers to their limits.

— Supercomputing, games, portable devices, etc.

! Computer architecture illustrates many fundamental ideas in computer
science

— Abstraction, caching, and indirection are CS staples

4

CSE370 vs. CSE378

! This class expands upon the computer architecture material from the last
few weeks of CSE370, and we rely on many other ideas from CS370.

— Understanding binary, hexadecimal and two’s-complement numbers is
still important.

— Devices like multiplexers, registers and ALUs appear frequently. You
should know what they do, but not necessarily how they work.

— Finite state machines and sequential circuits will appear again.

! We do not spend time with logic design topics like Karnaugh maps,
Boolean algebra, latches and flip-flops.

Y

0 0 1 1

0 0 1 1
X

W
0 1 0 0

0 1 0 0

Z

5

Who we are

! Lecturer:

Prof. Luis Ceze

! Teaching Assistants, Lab Assistants:

Joseph Devietti (TA)

Anindita Mitra (TA)

Shen-Hui Lee (SLA)

Colin Bayer (SLA)

6

Administrivia

! The textbook provides the most comprehensive coverage

— Computer Organization and Design, Patterson and Hennessy, 3rd
Edition

! Lectures will present course material

! Sections will clarify course material and homeworks

! Grading:

— lab assignments: 35%

— homeworks: 20%

— midterm: 15%

— final: 25%

— participation: 5%

! Getting in touch with us: cs378@cs, cse378-tas@cs, course Wiki

! Course webpage:

http://www.cs.washington.edu/education/courses/378/07au/

7

Instruction set architectures

! Interface between hardware and software

— abstraction: hide HW complexity from the software through a set of
simple operations and devices

add, mul, and, lw, ...

Software

Hardware

ISA

8

MIPS

! In this class, we’ll use the MIPS instruction set architecture (ISA) to
illustrate concepts in assembly language and machine organization

— Of course, the concepts are not MIPS-specific

— MIPS is just convenient because it is real, yet simple (unlike x86)

! The MIPS ISA is still used in many places today. Primarily in embedded
systems, like:

— Various routers from Cisco

— Game machines like the Nintendo 64 and Sony Playstation 2

From C to Machine Language

9

a = b + c;

add $16, $17, $18

Compiler

Assembler

01010111010101101...

High-level
language (C)

Assembly
Language
(MIPS)

Binary
Machine
Language
(MIPS)

10

What you will need to learn soon

! You must become “fluent” in MIPS assembly:

— Translate from C to MIPS and MIPS to C

! Example problem: Write a recursive function

Here is a function pow that takes two arguments (n and m, both 32-bit
numbers) and returns nm (i.e., n raised to the mth power).

int

pow(int n, int m) {

 if (m == 1)

 return n;

 return n * pow(n, m-1);

}

Translate this into a MIPS assembly language function.

11

MIPS: register-to-register, three address

! MIPS is a register-to-register, or load/store, architecture.

— The destination and sources must all be registers.

— Special instructions, which we’ll see soon, are needed to access main
memory.

! MIPS uses three-address instructions for data manipulation.

— Each ALU instruction contains a destination and two sources.

— For example, an addition instruction (a = b + c) has the form:

add a, b, c

operation

destination sources

operands

12

Register file review

! Here is a block symbol for a general 2k ! n register file.

— If Write = 1, then D data is stored into D address.

— You can read from two registers at once, by supplying the A address
and B address inputs. The outputs appear as A data and B data.

! Registers are clocked, sequential devices.

— We can read from the register file at any time.

— Data is written only on the positive edge of the clock.

D data

 Write

 D address

 A address B address

A data B data

 2k ! n Register File

kk

k

 n

 n n

13

MIPS register file

! MIPS processors have 32 registers, each of which holds a 32-bit value.

— Register addresses are 5 bits long.

— The data inputs and outputs are 32-bits wide.

! More registers might seem better, but there is a limit to the goodness.

— It’s more expensive, because of both the registers themselves as well
as the decoders and muxes needed to select individual registers.

— Instruction lengths may be affected, as we’ll see in the future.

D data

 Write

 D address

 A address B address

A data B data

32 ! 32 Register File

55

5

 32

 32 32

14

MIPS register names

! MIPS register names begin with a $. There are two naming conventions:

— By number:

 $0 $1 $2 … $31

— By (mostly) two-character names, such as:

 $a0-$a3 $s0-$s7 $t0-$t9 $sp $ra

! Not all of the registers are equivalent:

— E.g., register $0 or $zero always contains the value 0

• (go ahead, try to change it)

! Other registers have special uses, by convention:

— E.g., register $sp is used to hold the “stack pointer”

! You have to be a little careful in picking registers for your programs.

15

Basic arithmetic and logic operations

! The basic integer arithmetic operations include the following:

 add sub mul div

! And here are a few logical operations:

 and or xor

! Remember that these all require three register operands; for example:

 add $t0, $t1, $t2 # $t0 = $t1 + $t2

 mul $s1, $s1, $a0 # $s1 = $s1 x $a0

16

! More complex arithmetic expressions may require multiple operations at
the instruction set level.

t0 = (t1 + t2) ! (t3 " t4)

 add $t0, $t1, $t2 # $t0 contains $t1 + $t2
 sub $s0, $t3, $t4 # Temporary value $s0 = $t3 - $t4
 mul $t0, $t0, $s0 # $t0 contains the final product

! Temporary registers may be necessary, since each MIPS instructions can
access only two source registers and one destination.

— In this example, we could re-use $t3 instead of introducing $s0.

— But be careful not to modify registers that are needed again later.

Larger expressions

17

Immediate operands

! The ALU instructions we’ve seen so far expect register operands. How do
you get data into registers in the first place?

— Some MIPS instructions allow you to specify a signed constant, or
“immediate” value, for the second source instead of a register. For
example, here is the immediate add instruction, addi:

 addi $t0, $t1, 4 # $t0 = $t1 + 4

— Immediate operands can be used in conjunction with the $zero register
to write constants into registers:

 addi $t0, $0, 4 # $t0 = 4

! MIPS is still considered a load/store architecture, because arithmetic
operands cannot be from arbitrary memory locations. They must either be
registers or constants that are embedded in the instruction.

18

A more complete example

! What if we wanted to compute the following?

1 + 2 + 3 + 4

19

We need more space!

! Registers are fast and convenient, but we have only 32 of them, and each
one is just 32-bits wide.

— That’s not enough to hold data structures like large arrays.

— We also can’t access data elements that are wider than 32 bits.

! We need to add some main memory to the system!

— RAM is cheaper and denser than registers, so we can add lots of it.

— But memory is also significantly slower, so registers should be used
whenever possible.

! In the past, using registers wisely was the programmer’s job.

— For example, C has a keyword “register” that marks commonly-used
variables which should be kept in the register file if possible.

— However, modern compilers do a pretty good job of using registers
intelligently and minimizing RAM accesses.

20

General hints to reach CSE378 nirvana

! Remember the big picture.
 What are we trying to accomplish, and why?

! Read the textbook.
 It’s clear, well-organized, and well-written. The diagrams can be complex,

but are worth studying. Work through the examples and try some exercises
on your own. Read the “Real Stuff” and “Historical Perspective” sections.

! Talk to each other.
 You can learn a lot from other CSE378 students, both by asking and

answering questions. Find some good partners for the homeworks/labs
(but make sure you all understand what’s going on).

! Help us help you.
 Come to lectures, sections and office hours. Send email or post on the

mailing list/Wiki. Ask lots of questions! Check out the web page.

