CSE 378 A

Quiz Section #9

Virtual Memory

Motivations: We want to be able to have a flat 32-bit address space for every single process that we run, so that the programmer does not have to think about little details. However, as this will require each program to have 4 GB of memory, this is obviously impossible to do in a straightforward manner.

There are several ways to make this work. They are:

· Swapping – Don’t allow everyone in memory at the same time.

· Segmentation – Divide a program into logical units and allow units to be swapped in and out of memory.

· Paging – Everyone is allowed only a part of their program in memory at a time.

The latter is an incredibly common solution used in operating systems today.

 Virtual Memory Translation scheme Physical (Real) Memory

 X

 X

 X

 X

 X

 pagefile.sys

 Disk or

 a paging partition

Pages and frames are both equal in size, around 1-4 KB typically.

Note that, while the pages themselves can be ordered in any way in the actual frames, the memory within the pages will always be contiguous, no matter what. If A is at the bottom of page 2, B is at the very top of page 3, and C is right after B, then in physical memory A and B can be arbitrarily close or far from each other, but C will always follow B.

Now that we have this nice scheme to accomplish our goals, we have to find a way to make it work. Specifically, we need to understand how the translation mechanism works.

First of all, we take a 32-bit virtual address that the processor generates, and split it into two fields. The offset is simply the log2 of

the size of the page; and the page number is

the rest of the address. This gives us the very

nice property that all addresses with the same

“page number” field will be in the same page

(and, therefore, also the same frame). The

offset simply specifies which byte within the

given page/frame we want: it will range from

0 to pagesize-1. You can see from the example above that, while A, B, and C have consecutive virtual addresses, A will be at page number 2 with offset pagesize-1, while B will have page number 3 with offset 0. Since pages can be arbitrarily mapped into frames, A and B will likely be nowhere close to each other.

So now all we need to do is match the page number to the frame number, and append the offset bits as the lower-order bits. The page table (one per process) helps us with the page to frame translation. The page table has as many entries as there are pages – the page number gives us an easy offset into the page table, for very quick lookup. Each line of the page table contains the following:

· Frame number – Exactly what we want to know for address translation.

· Protection bits – What operations are allowed on the page? (reading, writing…)

· Valid bit – Is the given entry actually valid? If it is not valid, that means that we will get a page fault, since the page is out on disk and needs to be fetched.

· Mod/Dirty bit – Have the values in this page been modified? If this bit is set, when we want to kick this page out of memory, we will need to write its contents out to disk.

· Reference bit – Set to 1 whenever the page has been read or written. Useful for implementing versions of the LRU algorithm. (more later)

· Many, many others, but not very important right now.

So far, this is a nice scheme, except for one thing – the page tables will necessarily be of a significant size, so they must reside in memory. And memory is slow… Therefore, we will place a small cache in hardware, that will attempt to translate the address on its own. This TLB (Translation Lookaside Buffer) will simply cache some entries of the currently-used page table. By the principle of spatial locality, this should save us most of the time. If the TLB cannot find the entry, then we will have to go to the actual page tables that reside in memory.

Since the TLB is a small cache, it is built like one. It treats the incoming “page number” bits as the address. It stores one “address” per cache line, and the cache line data contains all that is present in the page table. Since the cache stores one address per line, we know that the “d” portion will be 0 bits long. So, we will split the “page number” into the “index” and the “tag”, appropriately. The “index” will serve as an offset into the TLB, for lookup. The “tag” will match the page number we are trying to look up to the page number that is in the cache line.

The final concern we have is that memory might become full. When we try to bring in a page from disk, there might be no free frames to place the page into. In that case, we will have to kick out an existing page that that process owns. How do we pick which one? (Doesn’t this sound familiar?).

There are very many strategies for this – random, FIFO, LRU, optimal(?). LRU will give the best results, but is expensive to compute. FIFO will do worse, but is faster. In real life, a combination of FIFO and LRU is used. Examples… A B C A B D A D B C B

Finally, how does this all fit together?

Also, realize that a very major portion of the story has not been told yet – how the hardware and the operating system interface to accomplish these things. If you would like to know this in a bit (or a lot) more detail, ask me after class.

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Frame 7

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

page number

offset

offset

frame number

MEM Cache

Hierarchy

MEM

Processor

Virtual Address

TLB

Physical Address

