CSE 378 A

Quiz Section #8

Caching

All the information (instructions and data) that our program requires to run is stored in main memory. However, in comparison with processors, this memory is downright slow. We would like to have all our information in a much faster memory. This sounds like an impossible goal, but program locality will help us.

Spatial locality – related information is stored nearby.

Temporal locality – information that was recently used will likely be used again.

Using the above principles, we can keep the subset of all information the program is working with in a very fast memory (cache) close to the processor, and bring other pieces of code and data into this cache when our program needs them. A cache is nothing more than a small and fast memory, that mirrors certain portions of main memory.

 processor

 cache hit

 cache miss

 cache

 main memory

Bringing the contents of memory into the cache on a miss is called on-demand caching.

The simplest method of caching is direct-mapped, where a memory location maps to a single specific place in the cache. Tags Data

 (cache line/block/entry)

 …

The processor generates a 32-bit address. How do we find its place in the cache? We split the address into 3 parts: the tag, the index, and the displacement.

Displacement – Note that each address references some byte in memory. Our cache line may (and probably will) have multiple bytes stored inside it. So, we really don’t care about which byte it is exactly in that line. |d| = log2(number of bytes in a cache line).

Index ​– The index will tell us which cache line the current address belongs to, using simple modulo arithmetic. Namely, |index| = log2(number of lines in cache). Note that, since our cache is smaller than main memory, multiple addresses will have the same index field, and therefore will map to the same line in the cache.

Tag – Tags are used to differentiate between the multiple addresses that map to the same cache line. Though these addresses will have the same index, their tags will be different. In looking at the cache, we compare the appropriate tag entry to the one in the address, and signal a hit if it matches. |tag| = sizeof(word) - |index| - |d|.

(Note that if two memory addresses are competing for the same location in the cache, we will get a ping-pong effect. Only one can be in the cache at any one time. These are called conflict misses.

We can solve this using set-associative caching techniques. The basic idea is to let a single memory address map to two or more cache lines, and check all those lines in parallel on every reference.

Note that, even though the

associativity of each line

increases, the number of lines

decreases (by a factor of the

associativity), since the total

cache size must remain the

same.

We split the address reference into the same three fields as before:

Displacement – Same as before.

Index – Will become smaller than it was before. Because there are multiple sets in the cache, and the total cache size must remain the same, the number of lines in each set must decrease. Specifically, the new number of lines = old number of lines / associativity.

Tag – Computed same as before. Since the index will become smaller in size, the tag field must increase in length.

(Note that two competing memory references can now share the cache.

Fully associative cache designs are also possible – where any memory address can map to any location, on the fly. This allows us to use the cache more fully (not keep any lines idle), but it also means that we have to check every single cache line when we try to discern if our data is already in the cache. Can be very costly for many comparisons. Therefore, fully-associative caches are usually used only for very small caches.

Suppose that we try to look for our data in a set-associative cache, but we do not find it there. Therefore, we fetch it from memory, and need to put it in the cache. But, which set do we put it into? In other words, which existing data do we kick out of the cache? Many choices: random, FIFO, Least Recently Used, Optimal(?).

Now that we know how to read data into and from the cache, the obvious topic is: what happens when we do a store into memory? Any number of things can happen.

If there was a cache hit:

If we are using a write-back policy:

Then we write the data to the cache only, and set a dirty bit. That way, when this data has to be flushed from the cache, if the dirty bit is on, we can write it back into memory then.

If we are using a write-through policy:

Then we write the data to both the cache and main memory at the same time. Note that we do not need a dirty bit in this case, since the data in the cache and in memory is now always consistent.

If there was a cache miss:

If we are using a write-allocate policy:

Then we bring the block into the cache, as if we had just read that data into the cache.

If we are using a write-around policy:

Then we simply write the data into memory only.

Endif

So why don’t we simply make our caches as big as we want, thereby reducing the number of capacity misses, and making the hit rate in our caches arbitrarily high?

Finally, note that in reality, there are always several layers of caches between the processor and main memory. The smaller and faster caches are, like always, closer to the processor. This does not change anything, except that each cache now thinks that the cache above it or the processor is the generator of the addresses, and the cache below it or the actual main memory is the true storage of all the data. Each cache operates on its own, handling requests from the one above, and issuing requests to the one below.

This kind of cache hierarchy allows us a more gradual transition from small & fast memories to large & slow memories.

tag

index

d

