CSE 378

Quiz Section #6

Pipelining in Detail

First of all, any questions?

Pipelining continued:
We already know very well how a pipeline operates under ideal conditions. The unfortunate truth is, however, that ideal conditions are very hard to achieve – we always run into hazards that the processor must handle. One such hazard is the data hazard – it occurs when instruction B follows A, one of B’s inputs depends on A’s output, and B reads its inputs before A has a chance to write them back. As you can see, if we didn’t add any logic to the processor to handle this kind of case, B would have to work with “stale” (and therefore very much useless) data.

Let us consider a series of instructions where data dependencies are indicated by arrows:

A
B
C
D

And here is a representation of our pipeline within our processor:

 EX

We let our processor execute, until it comes to this state:

 C | B | A | X | X

(The “X” instructions we do not care about.)

Note that at the end of this cycle, A will have computed its result, while B would have read stale values for its inputs. We let the clock cycle to get this…

 D | C | B | A | X

In order for B to now compute the correct result, we will have to do forwarding. The forwarding unit must realize that one of B’s input registers is equivalent to A’s output register, and therefore forward A’s result to B. This forwarding will take place from the output of the EX/MEM pipeline register, and to the input of the ALU.

Now, let us let the clock cycle once more to get the following:

 X | D | C | B | A

Note that C is now also working with stale values for its input. The forwarding unit must now pass A’s result into one of C’s inputs, by routing the correct output of the MEM/WB pipeline register into the correct ALU input. (Note that both inputs for the ALU will have MUXes to select from multiple regular and forwarded values to do the computation upon.) And that is all there is to the forwarding unit.

Now, we also know that there is a dependency between A and D, but since A is in the write-back stage and D is only in the decode stage, we’re off free, right? Well, wrong. Remember from previous quiz section, where I told you that in SMOK registers are read at the beginning of the give cycle, and written at the end of the cycle. This means that the values D reads from the register files will not contain the value that A will write to it. Not exactly the behavior we want, so we will try to remedy it. The simplest approach is to put a (container) wrapper around the register file, that will check whether someone is trying to read one of the values being written, and forward that value to the output in the given case (while also writing it to the register file). Also, remember that the register file wrapper must also protect the $0 register.

Well, that’s it for forwarding… at least in the basic case. One issue to consider is a load instruction followed immediately by a data-dependent R-type instruction. Even forwarding cannot save us in this case, since the result will only be available at the MEM/WB pipeline register (not the EX/MEM pipeline register) – much too late to provide as an input to the ALU for the dependent instruction. The only solution we have left is to stall the pipeline, to insert a no-op (or bubble) after the corresponding load instruction. Therefore, we will need to not only build a forwarding unit and a better register file, but also a hazard detection unit.

The hazard detection unit can check the instruction that currently resides in the ID/EX pipeline register, and the instruction that resides in the IF/ID pipeline register. If the former is a load instruction and the latter is an R-type instruction whose registers are dependent upon the destination of the load, then we stall. Stalling simply makes the PC and the IF/ID pipeline registers non-writable (set the W input to 0) for one clock cycle, while also flushing the ID/EX pipeline register (to insert a bubble). As a sidenote, you can most likely omit the check for whether the following instruction is an R-type, as it is non-trivial, and simply stall for ANY following dependent instruction. This will, of course, give us unnecessary stalls (just consider a “j” instruction following a load). Also, compilers will always do their best to put a nondependent instruction after any load, to ensure that the pipeline doesn’t need to be stalled.

The previous discussion gives us a way to handle any data hazard that comes our way, without a problem. However, there are also control hazards, where the order of execution changes (for example, via a branch). Note that for a pipeline, we only know whether the branch is taken or not taken at the end of the EX stage (or sometimes even the beginning of the MEM stage)! What instructions do we fetch in the meantime, to keep the pipeline running? We make an educated guess (if interested, ask me after quiz section on how this is done) on whether the branch is taken or not taken. If our guess was wrong, however, then we have to flush all the following instructions, and begin fetching the right ones. This is naturally costly, so we want to guess right. This is the basic idea for handling control hazards – very simple at its basis, though the branch prediction logic itself can get to be very fancy.

IF

ID / REG

MEM

WB / REG

