CSE 378 Quiz Section #3

MIPS Assembly Wrap-up

First of all, any questions about programming in MIPS assembly?

Any questions about the course in general?

Procedure calls in a nutshell:
Basic semantics:
Procedure calls and returns are accomplished using MIPS assembly instructions

jal <label> and jr <register>

Specifically, the <label> points to the first line of the function we wish to call. The jal instruction jumps to that line (by setting the PC correctly), and saves the old PC value to register $ra.

The jr instruction sets the PC to the value that is contained in <register>. Usually, we use jr $ra, since that’s where the return address is saved anyways.

Return address:
If our function wants to use the jal instruction to call another function, or another instance of itself (for recursion), we must make sure to save the register $ra onto the stack before the jal instruction. Why? After the function call and before we return from this function, we must make sure to restore the value of $ra from the stack.

Volatile temporaries:
If our function uses any of the t-registers ($t0 through $t9), then we must save these registers on the stack before the function call, and restore them after the function call. Otherwise, they might end up clobbered (by the callee). We do not need to save these registers before using them in our function.

Saved temporaries:
If our function uses any of the s-registers ($s0 through $s7), then before we get to use these registers, we must save them onto the stack. Right before our function returns, we need to restore these registers. The upside: we don’t need to save or restore these registers when we call a function.

Parameters and Return values:
To pass parameters to our function call, we place them (by convention) into the registers $a0 through $a3. If our parameters don’t fit in these four registers, then we save the remaining ones on the stack. The callee must know to look for them there. Either the caller or the callee must make sure to pop these values off the stack – this is a matter of convention. To return values from a function call, we save them into registers $v0 and $v1. If we need to return more values than we can fit into these two registers, then we must place them onto the stack. The caller must know to look for them there, and must remove them from the stack at its convenience.

Your challenge: Write two standalone functions that compute the factorial of a number. You can use the a-registers and the v-registers for parameter and return-value passing. One must compute the factorial iteratively, the other recursively.
