Decimal & Binary Representation Systems

Decimal & binary are positional representation systems

- each position has a value: \(d \times \text{base}^i \)
- for example: \(321_{10} = 3 \times 10^2 + 2 \times 10^1 + 1 \times 10^0 \)
- for example: \(101000001_2 = 1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \)

The general formula for a positive number in:

- decimal: \(\sum_{i=0}^{n} a_i \times 10^{n-i} \), where the \(a_i \) are between 0 & 9
- binary: \(\sum_{i=0}^{m} b_i \times 2^{m-i} \), where the \(b_i \) are 0 or 1

Converting binary ➞ decimal:

- evaluate each position & add the factors
- \(101000001_2 = 1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 256 + 0 + 64 + 0 + 0 + 0 + 0 + 0 + 1 = 321 \)

Converting decimal ➞ binary:

- decompose the decimal number into powers of 2
- \(321 = 256 + 64 + 1 = 1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 101000001_2 \)
Hexadecimal Representation System

The hexadecimal numbers:

- 0–9, a, b, c, d, e, f
- binary values 0000 to 1111
- easier to use than binary numbers (1 digit represents several binary values)
- quick conversion to binary numbers

The general formula for a hexadecimal number is:

\[\sum_{i=0}^{n} a_i \times 16^{n-i}, \text{ where the } a_i \text{ are between 0 & f} \]

for example: \(141_{16} = 1 \times 16^2 + 4 \times 16^1 + 1 \times 16^0 = 321_{10}\)

Converting binary ➞ hexadecimal:

- group into 4-bit numbers: \(101001011_2 = 1010 \ 0101_2\)
- translate each group into a hexadecimal digit:
 \(1010 \ 0101_2 = 14B_{16}\)

Converting hexadecimal ➞ binary:

- expand each hex digit to a sequence of binary digits

Useful Powers of 2

\[2^{10} = 1024_{10} \approx 10^3 = 1 \text{ K}\]
\[2^{20} = 10^6 = 1 \text{ M}\]
\[2^{30} = 10^9 = 1 \text{ G}\]

Used particularly in storage sizes:

- 16KB cache
- 64MB memory
- 4GB disk
Representing Positive & Negative Numbers

Can represent 2^n different values in n bits

For **unsigned integers**, the values are $0..2^{32}-1$

Need a representation for **signed integers** with the following properties:
- an equal number of positive & negative numbers
- a unique representation for 0
- an easy hardware test for 0
- an easy hardware test for the sign
- easy hardware rules for addition/subtraction

Two’s Complement

First, some definitions:
- **least significant bit (lsb)**: the least magnitude bit (or digit), the one at the rightmost position of the representation
- **most significant bit (msb)**: the greatest magnitude bit (or digit), the one at the leftmost position of the representation

Representation for signed integers
- 0 is a series of zeros
- positive numbers: $\text{msb} = 0$
- negative numbers: $\text{msb} = 1$

To represent a negative number:
- start with the representation for its positive value
- flip all the bits (1’s to 0; 0’s to 1)
- add 1 to the lsb using binary arithmetic
Two’s Complement

Examples with a 4-bit binary number:
- What is the representation for 6_{10}?
- What is the representation for -6_{10}?
- What is the representation of 0?
- What is the range of positive numbers?
- What is the range of negative numbers?
- How do you represent 6_{10} in an 8-bit binary number?
- How do you represent -6_{10} in an 8-bit binary number?
- How does the hardware recognize whether a number is positive or negative?
- How does the hardware recognize whether a number is zero?

Addition/Subtraction in Two’s Complement

Addition
- do not treat the sign bit specially; perform an addition on all bits
- if add 2 numbers of opposite signs, this will work fine
- if add 2 positive numbers & result “appears” to be negative (msb = 1)
 - ➔ overflow (value won’t fit in “word size” number of bits)
 - hardware is using the sign bit as a value
 - generates an exception (unscheduled procedure call to the operating system) in the program (we’ll discuss exceptions at the end of the quarter)
- if add 2 negative numbers & result “appears” to be positive (msb = 0)
 - ➔ underflow
 - generates an exception in the program

Subtraction
- take the 2’s complement of the subtrahend & add it to the other operand

Rules are in Figure 4.4
Alternative Representations

Historically there have been other representations for signed integers, but they are no longer used.

Signed magnitude
- separate bit for the sign
- extra step to set it
- not clear where to store it
- has both positive & negative values for zero

One’s complement
- negative number is the complement of the absolute value
 + positive & negative values are balanced
 - largest positive value: $2,147,483,647_{10}$
 - largest negative value: $-2,147,483,647_{10}$
- has 2 values for zero
 - positive zero: 00.....00
 - negative zero: 11.....11

A Bag of Bits

Bit patterns have no meaning
Their meaning depends on how they are interpreted:
- signed integers
- unsigned integers
- floating point numbers
- characters
- instructions

For data, the interpretation is determined by the instruction.