Processor Datapath
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Register Transfer Perspective
« We'll use either block diagrams or pseudocode to describe the
operation/design of a simple processor which implements a
subset of the MIPS ISA.
« We'llimplement just a subset of the ISA:
« Memory reference: |lw and sw
- Arithmetic: add, sub, and, or, stli
« Control: beq, jump
« Key components:
» Combinational: the output is a function of the inputs (e.g. an
adder)
» Sequential: state is remembered (e.g. a register)
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Levels in Processor Design

» We can talk about design at a variety of levels (from low to high):
« Circuit design: transistors, resistors, capacitors, etc. Building
gates, flip-flops, etc.
« Logic design: putting gates (AND, OR, XOR, etc) and flip-flops
together to build blocks such as registers, adders, memory.
See CSE370.

« Register transfer level: describes the execution of instructions by
showing how information is transferred and manipulated
between adders, registers, memory, etc.

« Processor description: the ISA.

- System description: includes memory hierarchy, 10, number of
processors, etc.
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Data Path and Control Unit
Control ALU

Memory
hierarchy

A
A

Registers

 Data path:
- Combinational (ALU) + Sequential (Registers, PC, Status)

« How data moves between components, what operations are
performed on data.

« Control unit:
« Sends signals to data path elements
« Tells what data to move, where to move it, what ops to perform
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Combinational Elements: ALU

« ALU computes (combinational) output from its two inputs.

« Performs functions needed to execute arithmetic and logical
instructions.

« Combinational logic has a “critical path” which determines the
length of time needed for the output to stabilize given stable
inputs. (These days: ~1ns).

ALU
operation
Input 1

ALU Output

Input 2
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Building Blocks: Storage elements

« The basic building block is the register.
« Our registers store 32 bits.

« A register will only be written on the clock edge AND when the
write control line is asserted.

« |t can be read and written on the same clock, but the value read
will be the OLD value.

Output
bus

Write
control
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Synchronous Design

» Use a periodic clock, which controls when signals can be read
and when they can be written. Values in storage elements can
only be updated on clock edges.

» The clock determines when events occur, ie, when signals sent by
control unit are obeyed in the datapath.

Changes occur on every clock edge:

State Element 1 (ngggcbinationa State Element 2

e e

Changes occur on clock edges when a write signal is asserted
(this allows combinational logic to take several cycles):

State Element 1 Egé{'cbi”a“””m State Element 2

write write
4 signal signal
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Building Blocks: Register File

» Register file is an array of registers (32 in MIPS)

+ ISA tells us that we should be able to read 2 registers and write 1
register in a given instruction.

+ We need to know which registers to read/write, and what data to
write.

Read
reg1 Read | 4
data 1
» | Read
reg 2 )
Registers
Write
— Read
reg data 2
—_p| Write
data
Write

control

+ Typical access time is around 1ns.
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Memory

- Memory is like a register file, but much larger and slower.
« Can only read or write one location per cycle.

Read
control
Read
> | address Read
) data 1
| Write
address
Memory
| Write
data
Write

control

« Typical access time (for primary memory) is around 50ns. For
cache memory it is closer to 5ns.
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Datapath for R-type Instruction
Read
oy e
Instruction %3""5‘ X
Registers
Write Read
reg data 2
e
Write
control
« The instruction bits name the read and write regs (rs, rt, rd).
« On the clock edge, the data is read, which moves through the
ALU, hopefully in time to be latched into the write port at the next
clock edge.
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Instruction Fetch Datapath

Adder

Read
address
Instruction »

Instruction
Memory

» Our implementation will fully execute one instruction per clock
cycle: single cycle implementation.

» The PC tells us the read address.

« On each clock edge, a new value for PC will be latched into the
PC register.
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Datapath for Load/Store

Read ‘ Read
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| Write
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Write data
control Write
Sign control
16" |32

« The instruction bits tell us the registers to use (src/dest and base
register) and the 16 bit signed offset.

+ We use the ALU to compute the effective address, which is
passed along to the data memory.
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Datapath For Branch

Read
>reg 1 Read
Read data 1
Instruction? > regaz X To branch
—_— Registers control logic
Write Read
reg data 2
Write
data
Write
control
16 2

« Question: Why can’t we just use the ALU to compute the branch
target address?
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« Note that we add 2 muxes:
« One to select the second ALU input
« One to select the source for the register writeback (memory or
ALU result)
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Combinational Elements: (De)Multiplexor

» Multiplexor (mux) selects the value of one of its inputs to be
routed to the output:

—
M Output
2 or more P
inputs g
—»

Select
control signal

« Demultiplexor routes its input to one of its outputs:

input D 2 or more
e M outputs
X

Select
control signal
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Adding Instruction Fetch
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Full Datapath: Adding Branches Processor Control
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Adding Control Review of Instruction Format
« Control Unit: » The opcode lives in bits 31-26
» Decodes instruciton opcode/function field » The two registers to read are always the rs (25-21) and rt (20-16)
« Sends signals to the data path (muxes, reg file, memories) registers
. Some controls come directly from the instruction: « For a load/store, we find the base register in the rs field (25-21)
« Register fields indicate which register to read/write + The 16 bit offset (for branch or load/store) is in 15-0
« Immediate field « The destination register can be in one of two places:
- Building the control unit is not that complicated: + Loads: rt field (20-16)
- Input signals (opcode/function) are specified by the ISA + R-type: rd field (15-11)
- Output signals can be identified easily from the opcode « This implies we’ll need a mux to select between these two fields.
» We can use PLAs (see CSE370) to build hardwired control units
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Where are control signals needed?

- Register File:

» RegDst - selects between rt and rd field as destination register
(different for Load-store than R-type)

« RegWrite - do we want to write a register? (R-type, Load-store)
« ALU:

« ALUSrc - selects between immediate or register value as source
for ALU (different for R-type and I-type)

« Also need to select kind of ALU operation (bits 0-5 is function)
« Memory:

» MemWrite - are we writing memory? (store instructions)

» MemRead - are we reading memory? (load instructions)

* MemToReg - selects between memory value or ALU output as
writeback to the register file

« Branch - are we branching?
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« Using the provided figure (5.22), fill in this table which specifies
the control signals for the various instructions:
opcode | pog | aLy | Mem | e M M
Instr. bits: 9 to 9 em em Br
543210 Dst Src Reg Write Read | Write
R-format 000000
Iw 100011
sw 101011
beq 000100
CSE378 WINTER, 2001
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How are signals asserted?

 Control unit gets the opcode. Decoding yields:
« Control for the 3 muxes (RegDst, ALUSrc, MemToReg)
« Signals for read/write memory
« Signal for register write
« Signal for branch (ANDed with output of ALU)
« Signal to ALU Control unit

« We also have a small control unit for the ALU, which takes the
signal from the main control unit, together with the funct field (5-0)
from the instruction.

« We'll focus on the main control unit. The ALU control is similar.
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Control Functions

» We can express the functions for the control lines logically:
« RegDst = lop5 AND lop2
« ALUSIc = op5
« MemtoReg = op5
- RegWrite = lop2 AND !op3
» MemRead = op5 AND !op3
- MemWrite = op5 AND op3
« Branch = op2

» For our subset instruction set, this minimized logic is fine, but for
the full instruction set (64 opcodes), we'd want something more
general: We would specify the truth table, and implement it using
a PLA.
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