Processor Datapath

CSE378 WINTER, 2001
Register Transfer Perspective
« We'll use either block diagrams or pseudocode to describe the
operation/design of a simple processor which implements a
subset of the MIPS ISA.
« We'llimplement just a subset of the ISA:
« Memory reference: |lw and sw
- Arithmetic: add, sub, and, or, stli
« Control: beq, jump
« Key components:
» Combinational: the output is a function of the inputs (e.g. an
adder)
» Sequential: state is remembered (e.g. a register)
CSE378 WINTER, 2001

124

126

Levels in Processor Design

» We can talk about design at a variety of levels (from low to high):
« Circuit design: transistors, resistors, capacitors, etc. Building
gates, flip-flops, etc.
« Logic design: putting gates (AND, OR, XOR, etc) and flip-flops
together to build blocks such as registers, adders, memory.
See CSE370.

« Register transfer level: describes the execution of instructions by
showing how information is transferred and manipulated
between adders, registers, memory, etc.

« Processor description: the ISA.

- System description: includes memory hierarchy, 10, number of
processors, etc.

CSE378

WINTER, 2001

Data Path and Control Unit
Control ALU

Memory
hierarchy

A
A

Registers

 Data path:
- Combinational (ALU) + Sequential (Registers, PC, Status)

« How data moves between components, what operations are
performed on data.

« Control unit:
« Sends signals to data path elements
« Tells what data to move, where to move it, what ops to perform

CSE378

WINTER, 2001

125

127

Combinational Elements: ALU

« ALU computes (combinational) output from its two inputs.

« Performs functions needed to execute arithmetic and logical
instructions.

« Combinational logic has a “critical path” which determines the
length of time needed for the output to stabilize given stable
inputs. (These days: ~1ns).

ALU
operation
Input 1

ALU Output

Input 2

CSE378 WINTER, 2001

Building Blocks: Storage elements

« The basic building block is the register.
« Our registers store 32 bits.

« A register will only be written on the clock edge AND when the
write control line is asserted.

« |t can be read and written on the same clock, but the value read
will be the OLD value.

Output
bus

Write
control

CSE378 WINTER, 2001

Synchronous Design

» Use a periodic clock, which controls when signals can be read
and when they can be written. Values in storage elements can
only be updated on clock edges.

» The clock determines when events occur, ie, when signals sent by
control unit are obeyed in the datapath.

Changes occur on every clock edge:

State Element 1 (ngggcbinationa State Element 2

e e

Changes occur on clock edges when a write signal is asserted
(this allows combinational logic to take several cycles):

State Element 1 Egé{'cbi”a“””m State Element 2

write write
4 signal signal

WINTER, 2001

Building Blocks: Register File

» Register file is an array of registers (32 in MIPS)

+ ISA tells us that we should be able to read 2 registers and write 1
register in a given instruction.

+ We need to know which registers to read/write, and what data to
write.

Read
reg1 Read | 4
data 1
» | Read
reg 2)
Registers
Write
— Read
reg data 2
—_p| Write
data
Write

control

+ Typical access time is around 1ns.

WINTER, 2001

Memory

- Memory is like a register file, but much larger and slower.
« Can only read or write one location per cycle.

Read
control
Read
> | address Read
) data 1
| Write
address
Memory
| Write
data
Write

control

« Typical access time (for primary memory) is around 50ns. For
cache memory it is closer to 5ns.

CSE378 WINTER, 2001
Datapath for R-type Instruction
Read
oy e
Instruction %3""5‘ X
Registers
Write Read
reg data 2
e
Write
control
« The instruction bits name the read and write regs (rs, rt, rd).
« On the clock edge, the data is read, which moves through the
ALU, hopefully in time to be latched into the write port at the next
clock edge.
CSE378 WINTER, 2001

Instruction Fetch Datapath

Adder

Read
address
Instruction »

Instruction
Memory

» Our implementation will fully execute one instruction per clock
cycle: single cycle implementation.

» The PC tells us the read address.

« On each clock edge, a new value for PC will be latched into the
PC register.

CSE378

132

WINTER, 2001

Datapath for Load/Store

Read ‘ Read
> reg i 59{"‘ dl — control
] »| Read ata address Read |
Instruction reg 2) data 1
—e Registers Write
L pf Write Read address
reg data 2 Memory
| Write
data _ Write
Write data
control Write
Sign control
16" |32

« The instruction bits tell us the registers to use (src/dest and base
register) and the 16 bit signed offset.

+ We use the ALU to compute the effective address, which is
passed along to the data memory.

CSE378

134

WINTER, 2001

133

135

Datapath For Branch

Read
>reg 1 Read
Read data 1
Instruction? > regaz X To branch
—_— Registers control logic
Write Read
reg data 2
Write
data
Write
control
16 2

« Question: Why can’t we just use the ALU to compute the branch
target address?

CSE378 WINTER, 2001
Read
T R Wason | Bl
data 1 ea
.| p|Read address Read
4‘|HSUUCUOHV reg 2 Registers £ Write data um
L | Write Read address X
reg data 2 m Memory
| Write u
data & Write
‘ Write »|data
control Write
g\ control
LG\EIX) i
« Note that we add 2 muxes:
« One to select the second ALU input
« One to select the source for the register writeback (memory or
ALU result)
CSE378 WINTER, 2001

136

138

Combinational Elements: (De)Multiplexor

» Multiplexor (mux) selects the value of one of its inputs to be
routed to the output:

—
M Output
2 or more P
inputs g
—»

Select
control signal

« Demultiplexor routes its input to one of its outputs:

input D 2 or more
e M outputs
X

Select
control signal

CSE378 WINTER, 2001

Adding Instruction Fetch

Read
N Ao | ES8
Read Read
address Read data 1 ™ [address Read|
reg 2 Registers Write u
Instruction | o § ddr
! 5| Write Read address M
mstruction {/\e/g data 2 um Memory
lemor: rite
’ ™| data X Write
Write »|data
control Write
Si control
L@ b
CSE378 WINTER, 2001

Full Datapath: Adding Branches Processor Control

> m|

l u

4 > X
Adder Adder

_— lriegaf Read - Hbstation e ‘ ‘l?gr%!rjol
address Read data 1 aggress Read
i req 2Re isters ALU {Write data um
Instruction Write 9! o adcress .
Instruction reg data 2 Memory
Memory | Write u
data || _ |Write
‘ \c,\c/)rr%ﬁol = Write
control
16 2
CSE378 WINTER, 2001 CSE378 WINTER, 2001
140
Adding Control Review of Instruction Format
« Control Unit: » The opcode lives in bits 31-26
» Decodes instruciton opcode/function field » The two registers to read are always the rs (25-21) and rt (20-16)
« Sends signals to the data path (muxes, reg file, memories) registers
. Some controls come directly from the instruction: « For a load/store, we find the base register in the rs field (25-21)
« Register fields indicate which register to read/write + The 16 bit offset (for branch or load/store) is in 15-0
« Immediate field « The destination register can be in one of two places:
- Building the control unit is not that complicated: + Loads: rt field (20-16)
- Input signals (opcode/function) are specified by the ISA + R-type: rd field (15-11)
- Output signals can be identified easily from the opcode « This implies we’ll need a mux to select between these two fields.
» We can use PLAs (see CSE370) to build hardwired control units
CSE378 WINTER, 2001 CSE378 WINTER, 2001

142

Where are control signals needed?

- Register File:

» RegDst - selects between rt and rd field as destination register
(different for Load-store than R-type)

« RegWrite - do we want to write a register? (R-type, Load-store)
« ALU:

« ALUSrc - selects between immediate or register value as source
for ALU (different for R-type and I-type)

« Also need to select kind of ALU operation (bits 0-5 is function)
« Memory:

» MemWrite - are we writing memory? (store instructions)

» MemRead - are we reading memory? (load instructions)

* MemToReg - selects between memory value or ALU output as
writeback to the register file

« Branch - are we branching?

CSE378 WINTER, 2001
« Using the provided figure (5.22), fill in this table which specifies
the control signals for the various instructions:
opcode | pog | aLy | Mem | e M M
Instr. bits: 9 to 9 em em Br
543210 Dst Src Reg Write Read | Write
R-format 000000
Iw 100011
sw 101011
beq 000100
CSE378 WINTER, 2001

144

146

How are signals asserted?

 Control unit gets the opcode. Decoding yields:
« Control for the 3 muxes (RegDst, ALUSrc, MemToReg)
« Signals for read/write memory
« Signal for register write
« Signal for branch (ANDed with output of ALU)
« Signal to ALU Control unit

« We also have a small control unit for the ALU, which takes the
signal from the main control unit, together with the funct field (5-0)
from the instruction.

« We'll focus on the main control unit. The ALU control is similar.

CSE378

WINTER, 2001

Control Functions

» We can express the functions for the control lines logically:
« RegDst = lop5 AND lop2
« ALUSIc = op5
« MemtoReg = op5
- RegWrite = lop2 AND !op3
» MemRead = op5 AND !op3
- MemWrite = op5 AND op3
« Branch = op2

» For our subset instruction set, this minimized logic is fine, but for
the full instruction set (64 opcodes), we'd want something more
general: We would specify the truth table, and implement it using
a PLA.

CSE378

WINTER, 2001

145

147

