
124

CSE378 WINTER, 2001

Processor Datapath

125

CSE378 WINTER, 2001

Levels in Processor Design
• We can talk about design at a variety of levels (from low to high):

• Circuit design: transistors, resistors, capacitors, etc. Building
gates, flip-flops, etc.

• Logic design: putting gates (AND, OR, XOR, etc) and flip-flops
together to build blocks such as registers, adders, memory.
See CSE370.

• Register transfer level: describes the execution of instructions by
showing how information is transferred and manipulated
between adders, registers, memory, etc.

• Processor description: the ISA.

• System description: includes memory hierarchy, IO, number of
processors, etc.

126

CSE378 WINTER, 2001

Register Transfer Perspective
• We’ll use either block diagrams or pseudocode to describe the

operation/design of a simple processor which implements a
subset of the MIPS ISA.

• We’ll implement just a subset of the ISA:

• Memory reference: lw and sw

• Arithmetic: add, sub, and, or, stli

• Control: beq, jump

• Key components:

• Combinational: the output is a function of the inputs (e.g. an
adder)

• Sequential: state is remembered (e.g. a register)

127

CSE378 WINTER, 2001

Data Path and Control Unit

• Data path:

• Combinational (ALU) + Sequential (Registers, PC, Status)

• How data moves between components, what operations are
performed on data.

• Control unit:

• Sends signals to data path elements

• Tells what data to move, where to move it, what ops to perform

PC

Status

ALUControl

Registers

Memory
hierarchy

128

CSE378 WINTER, 2001

Combinational Elements: ALU
• ALU computes (combinational) output from its two inputs.

• Performs functions needed to execute arithmetic and logical
instructions.

• Combinational logic has a “critical path” which determines the
length of time needed for the output to stabilize given stable
inputs. (These days: ~1ns).

ALU

ALU
operation

Input 1

Input 2

Output

129

CSE378 WINTER, 2001

Synchronous Design
• Use a periodic clock, which controls when signals can be read

and when they can be written. Values in storage elements can
only be updated on clock edges.

• The clock determines when events occur, ie, when signals sent by
control unit are obeyed in the datapath.

State Element 1 State Element 2Combinational
Logic

State Element 1 State Element 2Combinational
Logic

write
signalwrite

signal

Changes occur on every clock edge:

Changes occur on clock edges when a write signal is asserted
 (this allows combinational logic to take several cycles):

130

CSE378 WINTER, 2001

Building Blocks: Storage elements
• The basic building block is the register.

• Our registers store 32 bits.

• A register will only be written on the clock edge AND when the
write control line is asserted.

• It can be read and written on the same clock, but the value read
will be the OLD value.

Write

control

Output
bus

Input
bus

131

CSE378 WINTER, 2001

Building Blocks: Register File
• Register file is an array of registers (32 in MIPS)

• ISA tells us that we should be able to read 2 registers and write 1
register in a given instruction.

• We need to know which registers to read/write, and what data to
write.

• Typical access time is around 1ns.

Registers

Read
reg 1

Read
reg 2

Write
reg

Write
data

Read
data 1

Read
data 2

Write
control

132

CSE378 WINTER, 2001

Memory
• Memory is like a register file, but much larger and slower.

• Can only read or write one location per cycle.

• Typical access time (for primary memory) is around 50ns. For
cache memory it is closer to 5ns.

Memory

Read
address

Write
address

Write
data

Read
data 1

Write
control

Read
control

133

CSE378 WINTER, 2001

Instruction Fetch Datapath

• Our implementation will fully execute one instruction per clock
cycle: single cycle implementation.

• The PC tells us the read address.

• On each clock edge, a new value for PC will be latched into the
PC register.

Instruction

Read
addressPC

Adder

Memory

4

Instruction

134

CSE378 WINTER, 2001

Datapath for R-type Instruction

• The instruction bits name the read and write regs (rs, rt, rd).

• On the clock edge, the data is read, which moves through the
ALU, hopefully in time to be latched into the write port at the next
clock edge.

Registers

Read
reg 1

Instruction reg 2

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

Read

135

CSE378 WINTER, 2001

Datapath for Load/Store

• The instruction bits tell us the registers to use (src/dest and base
register) and the 16 bit signed offset.

• We use the ALU to compute the effective address, which is
passed along to the data memory.

Registers

Read
reg 1

Instruction

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

16 32Sign
Ext.

Memory

Read
address

Write
address

Write
data

Read
data 1

Write
control

Read
control

Read
reg 2

136

CSE378 WINTER, 2001

Datapath For Branch

• Question: Why can’t we just use the ALU to compute the branch
target address?

Registers

Read
reg 1

Instruction reg 2

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

Read

16 32Sign
Ext.

Adder
Sum

PC + 4

Shift
Left
 2

Branch Target

To branch
control logic

137

CSE378 WINTER, 2001

Combinational Elements: (De)Multiplexor
• Multiplexor (mux) selects the value of one of its inputs to be

routed to the output:

• Demultiplexor routes its input to one of its outputs:

M
U
X

Select
control signal

Output2 or more
inputs

D
M
U

Select
control signal

2 or moreinput
outputs

X

138

CSE378 WINTER, 2001

Combining Memory and R-type

• Note that we add 2 muxes:

• One to select the second ALU input

• One to select the source for the register writeback (memory or
ALU result)

Registers

Read
reg 1

Instruction reg 2

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

Read

16 32Sign
Ext.

Read
address

Write
address

Write
data

Read
data

Write
control

Read
control

m
u
x

Memory

m
u
x

139

CSE378 WINTER, 2001

Adding Instruction Fetch

Registers

Read
reg 1

reg 2

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

Read

16 32Sign
Ext.

Read
address

Write
address

Write
data

Read
data

Write
control

Read
control

m
u
x

Memory

m
u
x

Instruction

Read
addressPC

Adder

Memory

4

Instruction

140

CSE378 WINTER, 2001

Full Datapath: Adding Branches

Registers

Read
reg 1

reg 2

Write
reg
Write
data

Read
data 1

Read
data 2

Write
control

ALU

ALU
operation

Read

16 32Sign
Ext.

Read
address

Write
address

Write
data

Read
data

Write
control

Read
control

m
u
x

Memory

m
u
x

Instruction

Read
addressPC

Adder

Memory

4

Instruction

Adder
Shift
Left
 2

m
u
x

141

CSE378 WINTER, 2001

Processor Control

142

CSE378 WINTER, 2001

Adding Control
• Control Unit:

• Decodes instruciton opcode/function field

• Sends signals to the data path (muxes, reg file, memories)

• Some controls come directly from the instruction:

• Register fields indicate which register to read/write

• Immediate field

• Building the control unit is not that complicated:

• Input signals (opcode/function) are specified by the ISA

• Output signals can be identified easily from the opcode

• We can use PLAs (see CSE370) to build hardwired control units

143

CSE378 WINTER, 2001

Review of Instruction Format
• The opcode lives in bits 31-26

• The two registers to read are always the rs (25-21) and rt (20-16)
registers

• For a load/store, we find the base register in the rs field (25-21)

• The 16 bit offset (for branch or load/store) is in 15-0

• The destination register can be in one of two places:

• Loads: rt field (20-16)

• R-type: rd field (15-11)

• This implies we’ll need a mux to select between these two fields.

144

CSE378 WINTER, 2001

Where are control signals needed?
• Register File:

• RegDst - selects between rt and rd field as destination register
(different for Load-store than R-type)

• RegWrite - do we want to write a register? (R-type, Load-store)

• ALU:

• ALUSrc - selects between immediate or register value as source
for ALU (different for R-type and I-type)

• Also need to select kind of ALU operation (bits 0-5 is function)

• Memory:

• MemWrite - are we writing memory? (store instructions)

• MemRead - are we reading memory? (load instructions)

• MemToReg - selects between memory value or ALU output as
writeback to the register file

• Branch - are we branching?

145

CSE378 WINTER, 2001

How are signals asserted?
• Control unit gets the opcode. Decoding yields:

• Control for the 3 muxes (RegDst, ALUSrc, MemToReg)

• Signals for read/write memory

• Signal for register write

• Signal for branch (ANDed with output of ALU)

• Signal to ALU Control unit

• We also have a small control unit for the ALU, which takes the
signal from the main control unit, together with the funct field (5-0)
from the instruction.

• We’ll focus on the main control unit. The ALU control is similar.

146

CSE378 WINTER, 2001

Examples
• Using the provided figure (5.22), fill in this table which specifies

the control signals for the various instructions:

Instr.
opcode
bits:
543210

Reg
Dst

ALU
Src

Mem
to
Reg

Reg
Write

Mem
Read

Mem
Write Br

R-format 000000

lw 100011

sw 101011

beq 000100

147

CSE378 WINTER, 2001

Control Functions
• We can express the functions for the control lines logically:

• RegDst = !op5 AND !op2

• ALUSrc = op5

• MemtoReg = op5

• RegWrite = !op2 AND !op3

• MemRead = op5 AND !op3

• MemWrite = op5 AND op3

• Branch = op2

• For our subset instruction set, this minimized logic is fine, but for
the full instruction set (64 opcodes), we’d want something more
general: We would specify the truth table, and implement it using
a PLA.

