Decimal & Binary Representation Systems

Decimal & binary are positional representation systems

• each position has a value: \(d \cdot base^i \)
• for example, \(321_{10} = 3 \cdot 10^2 + 2 \cdot 10^1 + 1 \cdot 10^0 \)
• for example, \(101000001_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \)

The general formula for a positive number in:

• decimal: \(\sum_{i=0}^{n} a_i \times 10^{n-i} \), where the \(a_i \) are between 0 & 9

• binary: \(\sum_{i=0}^{m} b_i \times 2^{m-i} \), where the \(b_i \) are 0 or 1
Decimal & Binary Representation Systems

Converting binary to decimal:

- add the factors
- \(101000001_2 =\)
- \(1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 256 + 0 + 64 + 0 + 0 + 0 + 0 + 0 + 1 = 321\)

Converting decimal to binary:

- decompose the decimal number into powers of 2
- \(321 = 256 + 64 + 1 = 1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 101000001_2\)
Hexadecimal Representation System

The hexadecimal numbers:
• 0–9, a, b, c, d, e, f
 • binary values 0000 to 1111
 • easier to use than binary numbers (1 digit represents more values)
 • quick conversion to binary numbers

The general formula for a hexadecimal number is:

\[\sum_{i=0}^{n} a_i \times 16^{n-i} \], where the \(a_i \) are between 0 & f

• for example, \(141_{16} = 1 \times 16^2 + 4 \times 16^1 + 1 \times 16^0 = 321_{10} \)

Converting binary to hexadecima:
• group into 4-bit numbers: \(101001011_2 = 1010 \quad 0111_2 \)
• translate each group into a hexadecimal digit:
 \(1010_2 = 10_{16} = 0x10 \quad 0111_2 = 7_{16} = 0x7 \)

Converting hexadecimal to binary
• expand each hex digit to a sequence of binary digits
Useful Powers of 2

\[
2^{10} = 1024_{10} \approx 10^3 = 1 \text{ K}
\]
\[
2^{20} \approx 10^6 = 1 \text{ M}
\]
\[
2^{30} \approx 10^9 = 1 \text{ G}
\]

Used particularly in storage sizes:
- 16KB cache
- 64MB memory
- 4GB disk

Octal Representation System

Used by curmudgeons:
- Base 8
- Default output for some unix tools ;-(
- Sometimes useful for C -- can embed in strings
- "Hello there \033!\006"
Representing Positive & Negative Numbers

Can represent 2^n different values in n bits

For unsigned integers, the values are $0..2^{32}-1$

Need a representation for signed integers with the following properties:

- an equal number of positive & negative numbers
- a unique representation for 0
- an easy hardware test for 0
- an easy hardware test for the sign
- easy hardware rules for addition/subtraction

Some definitions:

- least significant bit (lsb): the least magnitude bit (or digit), the one at the rightmost position of the representation
- most significant bit (msb): the greatest magnitude bit (or digit), the one at the leftmost position of the representation
Two’s Complement

Representation for signed integers

- 0 is a series of zeros
- positive numbers: msb = 0
- negative numbers: msb = 1

To represent a negative number:

- start with the representation for its positive value
- flip all the bits (1’s to 0; 0’s to 1)
- add 1 to the lsb using binary arithmetic
Two’s Complement

Example with a 4-bit binary number:

- What is the representation for 6_{10}?

- What is the representation for -6_{10}?

- What is the representation of 0?

- What is the range of positive numbers?

- What is the range of negative numbers?

- How do you represent 6_{10} in an 8-bit binary number?

- How do you represent -6_{10} in an 8-bit binary number?

- How does the hardware recognize whether a number is positive or negative?

- How does the hardware recognize whether a number is zero?
Addition/Subtraction in Two’s Complement

Addition

• do not treat the sign bit specially; perform an addition on all bits
• if add 2 numbers of opposite signs, this will work fine
• if add 2 positive numbers & result “appears” to be negative (msb = 1)
 • overflow (value won’t fit in “word size” number of bits)
 • generates an exception (unscheduled procedure call to the operating system) in the program *(wait until the end of the quarter)*
• if add 2 negative numbers & result “appears” to be positive (msb = 1)
 • underflow
 • generates an exception in the program *(again, wait until the end of the quarter)*

Subtraction

• take the 2’s complement of the subtrahend & add it to the other operand
Alternative Representations

Historically there have been other representations for signed integers, but they are no longer used.

Signed magnitude
- separate bit for the sign
- extra step to set it
- not clear where to store it
- has both positive & negative values for zero

One’s complement
- negative number is the complement of the absolute value
 * Good: positive & negative values are balanced
 * largest positive value: $2,147,483,647_{10}$
 * largest negative value: $-2,147,483,647_{10}$
 * Bad: has 2 values for zero
 * positive zero: 00.....00
 * negative zero: 11.....11
A Bag of Bits

Bit patterns have no meaning
Their meaning depends on how they are interpreted:

- signed integers
- unsigned integers
- floating point numbers
- characters
- instructions

For data, the interpretation is determined by the instruction.