Branching and Jumping in a Pipeline

The decision to change the next instruction (branching and jumping) can possibly cause launched instructions to be flushed.

Branching Hazard

- A normal pipeline assumes “branch not taken”
- But when there is a branch, instructions must be killed
Reducing the Delay of Branches

- A fast equality test is used to compare the register values involved in the branch condition rather than a general comparator
 - It does not slow down the ID stage much, if at all, which maintains the cycle time
 - The fact that it is an equality test is reflected in the ISA

- This early "execution" of the branch means that only the instruction following the branch is in the pipeline
 - We only need to flush one part of the pipeline

- The branch delay is only 1 cycle! (c.f. 4 cycles on slide 2)
Dynamic Branch Prediction

- Assuming that a branch is not taken is a crude form of prediction
 - If 50% of branches are taken, we will be right 50% of the time

- To do better than this, we can examine past behavior of the branch to hint what will happen this time
- We maintain a small *branch prediction buffer* or *branch history table*
 - The table is indexed by the low order bits of branch instruction addresses (why not the high order bits?)
 - Each entry is a single bit which tells us whether the branch was taken
- Improves accuracy to 80-90%

Going Loopy

- Loops cause problems with the previous scheme
- The first and last iteration of a loop will be mispredicted

- If the loop has been executed earlier, then the first time we encounter the branch instruction, we will predict that it will not be taken
- On the final iteration, we will predict that the branch will be taken

- To handle this case, we use more than 1 bit of state in our branch prediction buffer
Delayed Branches

- Make the control hazard an architectural feature
- The instruction following a branch is always executed
- The compiler or assembler has to find an instruction to fill this slot
 - If none can be found, a NOP has to be inserted
- The instructions scheduled into the delay slot must
 - EITHER always be executed whether the branch is taken or not
 - OR have no side-effects
- Less popular now since longer pipelines and multiple instruction issue mean the single delay slot does not help as much
- Dynamic predictors have increased in popularity as transistor density has increased
Playing the Slots

a. From before

```
add $s1, $s2, $s3
if $s2 = 0 then
  Delay slot
```

b. From target

```
sub $t4, $t5, $t6
...
add $s1, $s2, $s3
if $s1 = 0 then
  Delay slot
```

c. From fall through

```
add $s1, $s2, $s3
if $s1 = 0 then
  Delay slot
sub $t4, $t5, $t6
```

© Larry Snyder 2000. All rights reserved