
Arithmetic

Computers do not store numbers or letters,
per se.  They only store bit sequences.

The bit sequences can be interpreted as
representing integers or floating point

numbers.  Arithmetic is accomplished by
the direct hardware implementation of

arithmetic algorithms

Converting Decimal to b-Bit Binary
• Let d be decimal number, less than 2b-1

b=0 quit

b := b-1

d > 2b

d := d - 2b  Output 0 in position b

 Output 1 in position b

y

y n

n

1998 in 12-bit
    d          2b

1998 2048:0
1998  - 1024:1
  974  -    512:1
  462  -    256:1
  206  -    128:1
    78  -      64:1
    14         32:0
    14         16:0
    14  -        8:1
      6  -        4:1
      2  -        2:1
      0           1:0



Representation
• Terminology

– least significant bit (lsb): least magnitude bit.

– most significant bit (msb): greatest magnitude bit.

– unsigned integers: k bit sequence representing 0 to 2k-1
– two’s complement: number representation for signed integers.

Unsigned Binary          Decimal 2s Complement Binary   Decimal
0000 0000 0000 0000 0 0000 0000 0000 0000 0
0000 0000 0000 0001 1 0000 0000 0000 0001 1
0000 0000 0000 0010 2 0000 0000 0000 0010 2

. . . . . .
1111 1111 1111 1101  65533 0111 1111 1111 1111     32767
1111 1111 1111 1110  65534 1000 0000 0000 0000    -32768
1111 1111 1111 1111  65535 1000 0000 0000 0001    -32767

1000 0000 0000 0010    -32766
. . .

1111 1111 1111 1101            -3
1111 1111 1111 1110            -2
1111 1111 1111 1111            -1

2s Complement
is “unbalanced”
since it has 1 more
negative number
than positive 
numbers. Why?

Unsigned gets a larger
range at the expense of
no negative representation

Converting 2s Complement

A positive number is its unsigned equivalent,
provided the msb is 0.

Finding -x given x: Complement all bits & add 1
In n-bit 2s complement, x + -x = 2n

0000 0000 0000 10102  1010

Compl.: 1111 1111 1111 0101
Add 1:  +                                 1

1111 1111 1111 01102 -1010
Compl.:  0000 0000 0000 1001
Add 1:  +                                 1

0000 0000 0000 10102  1010



Subtraction

• The well-known rule that subtraction is equivalent to
addition of a negated operand is important in
computing

a - b ≡ a + (-b)
• In the arithmetic-logic unit of a computer, there is no

subtraction circuitry per se, just negation

010 . . . 0

110 . . . 1

000 . . . 1+

a

b

1

Consequences of Signed Fields

A field of b bits can represent 2b configurations
• If the field is used for unsigned numbers …

Range:  0 to 2b-1
• If the field is used for signed numbers …

Range:  -2b-1 to 2b-1-1
• If the field is used so that some bits are always the

same, then do not represent them
Range of byte addresses for instructions:
0 to 2b+2 since least significant bits are 00

000 . . . 0

b



Representations

A bit sequence is neither signed nor unsigned, integer or
floating point, character or pixel ... its just a bit
sequence -- the key is how the bits are interpreted

• The interpretation nearly always matters, especially in
comparisons:

• 10110 < 00110 is true since -10 < 6 as 2s complement

• 10110 > 00110 is true since 22 > 6 as unsigned

• MIPS has additional comparison operators:
– sltu $8, $9, $10 #set less than unsigned

– sltiu $8, $9, 10 #set less than immed. unsign

Why are there no unsigned variants for beq, bne,
bgtz, blez, sh, sb, etc.?

Facts of Finite Representation
When combining two numbers produces a result larger

than can be represented in the available space, an
overflow occurs

Overflow is not always bad, but it must be reportable
Overflow is impossible when ...

• adding numbers with opposite signs because the
result is numerically between the operands

• subtracting numbers with like signs, since the
“addition” rule applies once B is negated

010 . . . 0

010 . . . 0

100 . . . 0

+



Conditions Causing Overflow

• For add operations (add and subtract), the
overflow can be detected by the sign of the
operands and the result

Operation Op A Op B Overflow
  A+B  ≥0   ≥0       <0
  A+B  <0   <0       ≥0
  A-B   ≥0   <0       <0
  A-B   <0   ≥0       ≥0

010 . . . 0

010 . . . 0

100 . . . 0

+
Notice that the subtraction
rule is simply the Addition rule
applied when subtraction is
negation of the second
operand followed by addition


