
© Larry Snyder, 2000, All rights reserved

Jumping To Procedures

It beats jumping to conclusions

© Larry Snyder, 2000, All rights reserved

Multiply
• Multiply mult is an R-type instruction, but is

complicated by the fact that the product of 2
32-bit numbers can be 64-bits long

• There is a special multiply result register
mult $8,$10 # Go forth and multiply

op rs rt rd shamt funct

0 8 10 0 0 24

00000001000010100000000000011000

The result can be removed using move from high, mfhi to get
the MSB‘s and move from low, mflo, to get the LSBs

© Larry Snyder, 2000, All rights reserved

Jumping
• The jr instruction has an R-type format and

jumps to the address in the operand register

• jr is mostly used for procedure return

jr $8 # Jump to address in Reg 8

op rs rt rd shamt funct

0 0 8 0 0 8

00000000000010000000000000001000

The address in the register is a true memory address,
not PC-relative instruction address

© Larry Snyder, 2000, All rights reserved

The Long Jump

• The jump instruction j is a J-format instruction

j 1000000 # Jump far away

 2 250000

00001000000000011110100001001000

6 26

01100000000001111010000100100000

PC31:28 LSBs filled

Effective Address

op address J-type

© Larry Snyder, 2000, All rights reserved

Jump and Link

• The jump and link jal instruction is J-type
• It jumps to the address like j, but saves the

address of the next instruction in $ra
jal B747 # Call procedure B747

op address J-type

 3 (address of label B747)/4

00001100000000011110100001001000

6 26

jal is used to call procedures, since saving the link
allows the procedure to return to the point of the call

© Larry Snyder, 2000, All rights reserved

Register Usage
The assembler conventions on register usage

Name Reg. No. Usage Preserved On Call
$zero 0 Constant value 0 N.A.

 1 Reserved for Assm N.A.
$v0-$v1 2-3 Result registers No
$a0-$a3 4-7 Arguments Yes
$t0-$t7 8-15 Temporaries No
$s0-$s7 16-23 Saved Locals Yes
$t8-$t9 24-25 More temporaries No

 26-27 Operating System N.A.
$gp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$fp 30 Frame Pointer Yes
$ra 31 Return Address Yes

See Appendix A-6 for more information

© Larry Snyder, 2000, All rights reserved

The Stack Allocation

The stack provides the dynamic strorage for
saving state during procedure calls

$fp

$sp
$fp

$sp

Arg Regs

Return Reg

Saved $s
Registers

 Local
Storage

$fp

$sp

High Mem

© Larry Snyder, 2000, All rights reserved

Addressing Modes

op rs rt immediate

op rs rt rd shamt funct

Register

op rs rt address

• Immediate

• Register

• Base Addressing

Register
Effective Address

© Larry Snyder, 2000, All rights reserved

Addressing Modes (continued)

• PC-relative Addressing

• Pseudo-direct Addressing

op rs rt address

PC
Effective Address

op address

PC
Effective Address:

