
© Larry Snyder 2000, All rights reserved

Loads, Stores and Branches

Loads and stores reference memory for
data, while the branches reference

memory for instructions.

© Larry Snyder 2000, All rights reserved

Memory Organization

• Memory is a linear array of bytes (8-bits)
• References can be to individual bytes, words

(32), half words (16) or double words (64)
• References should be aligned by data type

0: 1: 2: 3: 12:4: 5: 6: 7: 8: 9: 10: 11: 13:

 Alignment
Type Address LSB
byte any
halfword 0
word 00
double word 000

Byte Order
Big-endian: 0 is MSB

0 1 2 3
Little-endian: 0 is LSB

3 2 1 0

© Larry Snyder 2000, All rights reserved

Load & Store Instructions
• MIPS is a load store architecture ... all

operations are performed on values in
registers, so data in memory must be loaded
from or stored to memory

• Load, Store are I-format instructions, where
the “immediate” field is called “address” and
the instruction format looks like subscripting

 op rs rt address I-type instructions

lw rt, address(rs) Load Word
sw rt, address(rs) Store Word

Others
lb sb
lh sh
ld sd

© Larry Snyder 2000, All rights reserved

Base Addressing
• Load, Store use “base addressing” ... the

effective address, the address used to
reference memory, is the sum of the address
field and the contents of register rs

00000000000000000001000000000100 4100

Reg 3: 00000000000000000000000000011000 24

 + +

Example: lw $7, 4100($3)

 00000000000000000001000000011100 4124

The effective address of the memory word referenced

© Larry Snyder 2000, All rights reserved

Base Addressing For Indexing

• “Base/offset addressing” gets its name from
the idea that a series of addresses could be
created from a fixed base and a series of
offsets:

4100 + 0 = 4100 4100: c
4100 + 4 = 4104 4104: 2933c400
4100 + 8 = 4108 4108: ffffffff
4100 + 12 = 4112 4112: 0

...
Base

Offset Effective Address

Conclusion: Keep offset in the rs register

© Larry Snyder 2000, All rights reserved

Base Addressing For Relative Ref

• Base/offset addressing can be used for
referencing relative to a specific point in
memory, e.g. the top of a stack:

3 From Top = Top + -12 = -12($4) 4100: c
2 From Top = Top + -8 = -8($4) 4104:2933c400
1 From Top = Top + -4 = -4($4) 4108:ffffffff

 Top = Top + 0 = 0($4) 4112: 0
...

Offset
Base

Conclusion: Keep base in the rs register

Reg 4: 00000000000000000001000000010000

© Larry Snyder 2000, All rights reserved

Branches
• Branch instructions perform a test, and if true

change the control flow to begin executing at
the Label

beq $8, $9, Label # if $8=$9 goto Label
bne $5, $4, Label # if $5≠$4 goto Label

op rs rt offset I-type instruction

5 4 5 100

00010100100001010000000001100100

6 1655

beq has op = 4

© Larry Snyder 2000, All rights reserved

PC Relative Addressing

• The offset is the number of instructions
forward or backward that must be skipped to
get to the instruction labeled Label

• Thus, 4*offset + PC+4 is the address of the
instruction labeled with Label

• PC+4 is used because the PC already points to
the next instruction

• Figuring offsets manually is difficult because of
pseudoinstructions ... leave it to the assembler

• Forward is a + offset, backward is a - offset

© Larry Snyder 2000, All rights reserved

An R-type Instruction For Testing

• The “set less than” instruction is an R-type
instruction that tests the less than relation (<)
slt result, left_operand,right_operand

If the left operand is (strictly) less than the right operand as
signed integers, set result register to 1; otherwise set it to 0

Example: slt $7, $3, $4 # Is Reg3 < Reg4?

 0 3 4 7 0 42

00000000011001000011100000101010

© Larry Snyder 2000, All rights reserved

Other Conditions

• Branches are available for other conditions --
• bgt, bge, blt, ble have form: bxx src1, scr2, Label

• These branches are pseudoinstructions
constructed by the assembler from slt and
bne
Example: blt $4, $5, Label

becomes
 slt $1, $4, $5 # Set R1 to 1 if $4 < $5
 bne $1, $0, Label # $1≠$0 implies slt true

